
Ektimo

Report No.: R014868a Date: 16/02/2024 Page: 2 of 17

Ektimo

Document Information

Client Name: VIP Drum Reconditioners

Report Number: R014868a

Date of Issue: 16 February 2024

Attention: Arielle Comin

Address: 30-32 Powers Rd

Seven Hills NSW 2147

Testing Laboratory: Ektimo Pty Ltd, ABN 86 600 381 413

Reissue Record

Original Document Number	Initiator	Original Report Date	Section (s)	Reason for reissue
R014868	Client	1/12/2023	1.3 Licence Comparison 2.1 EPA 1 – Afterburner Discharge Stack	Nitrogen oxides results amended

Report Authorisation

Steven Cooper Senior Air Monitoring Consultant NATA Accredited Laboratory
No. 14601

This document is confidential and is prepared for the exclusive use of VIP Drum Reconditioners and those granted permission by VIP Drum Reconditioners. The report shall not be reproduced except in full.

Please note that only numerical results pertaining to measurements conducted directly by Ektimo are covered by Ektimo terms of NATA accreditation as described in the Test Methods table. This does not include calculations that use data supplied by third-parties, comments, conclusions, or recommendations based upon the results. Refer to Test Methods section for full details of testing covered by NATA accreditation.

Report No.: R014868a **Date:** 16/02/2024 **Page:** 3 of 17

Ektimo

Table of Contents

1	Ex	xecutive Summary	2
,			
	l.1	Background	
	1.2	Project Objective	
-	1.3	Licence Comparison	5
2	Re	esults	6
2	2.1	EPA 1 – Afterburner Discharge Stack	6
2	2.2	EPA 2 – Cooling Air Vent	12
3	Sa	ample Plane Compliance	13
3	3.1	EPA 1 – Afterburner Discharge Stack	13
3	3.2	EPA 2 – Cooling Air Vent	13
4	Pl	lant Operating Conditions	13
5	Te	est Methods	14
6	D	eviations to Test Methods	15
7	Q	uality Assurance/Quality Control Information	15
8	D	efinitions	16
9	A	ppendices	17

Appendix A: Site Images

Appendix B: Chain(s) of Custody

Appendix C: Laboratory Results

Report No.: R014868a Date: 16/02/2024 Page: 4 of 17

1 Executive Summary

1.1 Background

Ektimo was engaged by VIP Drum Reconditioners to perform emission testing at their Seven Hills plant. Testing was carried out in accordance with Environmental Licence 124.

1.2 Project Objective

The objective of the project was to conduct a monitoring programme to quantify emissions from the afterburner discharge stack and characteristic of the ingress flow at the cooling air vent as required by VIP Drum Reconditioners' Environmental Licence.

Monitoring was performed as follows:

Location	Test Date	Test Parameters*
EPA 1 – Afterburner Discharge Stack	October 4, 2023	Solid particles Carbon dioxide, oxygen, carbon monoxide, nitrogen oxides Sulfuric acid mist & sulfur trioxide (as SO ₃) Hydrochloric acid (HCl), chlorine Volatile organic compounds (VOCs) Metals (type 1 substances Sb, As, Cd, Pb, Hg) Dioxins and furans Dry gas density, molecular weight
EPA 1 – Afterburner Discharge Stack	October 18, 2023	Total fluoride, hydrogen sulfide (H ₂ S)
EPA 2 – Cooling Air Vent	October 4, 2023	Dry gas density, molecular weight

^{*} Flow rate, velocity, temperature, and moisture were also determined.

All results are reported on a dry basis at STP.

Plant operating conditions have been noted in this report.

The cooling air vent (EPA 2) consists of an open slot around the entire 4555mm circumference of the waste air duct stemming from the afterburner. The width of this slot is variable. Fresh ambient air is drawn through the slot under venturi. On the day of sampling the slot was open to a width of 160mm. Velocity measurements were taken with a pitot probe at four accessible locations around the circumference. All calculations assume that the cooling air vent flow into the afterburner waste air duct is consistent and uniform across the entire width and circumference of the slot.

Report No.: R014868a Date: 16/02/2024 Page: 5 of 17

Ektimo

1.3 Licence Comparison

The following licence comparison table shows that analyte highlighted in orange is outside the licence limit set by the NSW EPA as per licence 124 (last amended on 17 May 2023).

ЕРА	Pollutant	Units	Licence limit	Detected values at STP	Detected values (Corrected to 11% O₂)	Detected values (Corrected to 3% O ₂)	Detected values (Corrected to 12% CO ₂)
	Dioxins and furans	ng/m³	0.1	0.0086	0.064	-	-
	Hydrogen sulfide (USEPA Method 11)	mg/m ³	5	<0.1	-	<2	-
	Hydrogen sulfide (Method Ektimo 255)	mg/m ³	5	0.0074	-	0.1	-
	Volatile organic compounds	mg/m ³	40	<0.1	-	<2	-
	Nitrogen oxides	mg/m ³	2000	8.1	-	110	-
1 - Afterburner	Mercury	mg/m ³	3	<0.0008	-	<0.01	-
Discharge Stack	Chlorine	mg/m ³	200	0.13	-	1.8	-
Discharge Stack	Cadmium	mg/m ³	3	<0.0005	-	<0.007	-
	Hydrochloric acid (HCI)	mg/m ³	400	0.33	-	4.5	-
	Total fluoride (as HF)	mg/m ³	50	0.051	-	0.71	-
	Solid particles	mg/m ³	250	19	-	-	270
	Sulfuric acid mist and sulfur trioxide (as SO ₃)	mg/m ³	100	0.17	-	2.2	-
	Type 1 substances	mg/m ³	10	≤0.033	-	≤0.41	-

Please note that the measurement uncertainty associated with the test results was not considered when determining whether the results were compliant or non-compliant.

Report No.: R014868a **Date:** 16/02/2024 **Page:** 6 of 17

Ektimo

2 Results

2.1 EPA 1 – Afterburner Discharge Stack

Date	4/10/2023	Client	VIP Drum Reconditioners	
Report	R014868	Stack ID	EPA 1 - Afterburner Discharge Stack	
Licence No.	124	Location	Seven Hills	
Ektimo Staff	Graham Edwards, Ish Alam, Sahad Musthafa	State	NSW	
Process Conditions	Please refer to client records.		23	30914

Stack Parameters			
Moisture content, %v/v	2.9		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	0.72		
% Oxygen correction & Factor	3 %	13.43	
% Oxygen correction & Factor	11 %	7.43	
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0900		
Temperature, ℃	211		
Temperature, K	484		
Velocity at sampling plane, m/s	33		
Volumetric flow rate, actual, m³/s	28		
Volumetric flow rate (wet STP), m³/s	16		
Volumetric flow rate (dry STP), m³/s	15		
Mass flow rate (wet basis), kg/h	72000		

Gas Analyser Results			Average			Minimum			Maximum	
	Sampling time		0926 - 1150			0926 - 1150			0926 - 1150	
		(Corrected to			Corrected to			Corrected to	
Combustion Gases		Concentration mg/m³	3% O2 mg/m³	Mass Rate g/min	Concentration mg/m³	3% O2 mg/m³	Mass Rate g/min	Concentration mg/m³	3% O2 mg/m³	Mass Rate g/min
Nitrogen oxides (as NO ₂)		8.1	110	7.4	<4	<60	<4	15	200	13
Carbon monoxide		5.7	77	5.2	<2	<30	<2	42	570	38
		(Corrected to			Corrected to			Corrected to	
		Concentration	3% O2	Mass Rate	Concentration	3% O2	Mass Rate	Concentration	3% O2	Mass Rate
		ppm	ppm	g/min	ppm	ppm	g/min	ppm	ppm	g/min
Carbon monoxide		4.6	61	5.2	<2	<30	<2	34	460	38
		С	oncentration %v/v			Concentration %v/v		C	Concentration %v/v	
Carbon dioxide			0.8			<0.4			1	
Oxygen			19.6			19.2			20.3	

Report No.: R014868a Date: 16/02/2024 Page: 7 of 17

Date4/10/2023ClientVIP Drum Reconditioners

ReportR014868Stack IDEPA 1 - Afterburner Discharge Stack

 Licence No.
 124
 Location
 Seven Hills

 Ektimo Staff
 Graham Edwards, Ish Alam, Sahad Musthafa
 State
 NSW

Process Conditions Please refer to client records.

Dioxins & Furans (PCDDs & PCDFs)		Results	
Sampling time		0921 - 1140	
		Corrected to	
	Concentration	11% O2	Mass Rate
	ng/m³	ng/m³	ng/min
2,3,7,8-TCDF	0.00068	0.0051	0.62
2,3,7,8-TCDD	<0.002	< 0.02	<2
1,2,3,7,8-PeCDF	0.000097	0.00072	0.088
2,3,4,7,8-PeCDF	0.0014	0.01	1.3
1,2,3,7,8-Pe CDD	<0.003	< 0.02	<3
1,2,3,4,7,8-HxCDF	0.00022	0.0016	0.2
1,2,3,6,7,8-HxCDF	0.00023	0.0017	0.21
2,3,4,6,7,8-HxCDF	0.00019	0.0014	0.17
1,2,3,7,8,9-HxCDF	<0.00006	< 0.0004	<0.05
1,2,3,4,7,8-HxCDD	<0.0002	< 0.001	<0.2
1,2,3,6,7,8-HxCDD	<0.0001	<0.0008	<0.1
1,2,3,7,8,9-HxCDD	<0.0002	< 0.001	<0.2
1,2,3,4,6,7,8-HpCDF	<0.00003	< 0.0003	< 0.03
1,2,3,4,7,8,9-HpCDF	<0.00004	< 0.0003	< 0.04
1,2,3,4,6,7,8-HpCDD	0.000047	0.00035	0.042
OCDF	<0.0000009	<0.000006	<0.0008
OCDD	0.0000077	0.000057	0.0069
Total TCDF isomers	0.26	1.9	240
Total TCDD isomers	0.051	0.38	46
Total PeCDF isomers	0.062	0.46	57
Total PeCDD isomers	0.022	0.16	20
Total HxCDF isomers	0.018	0.13	16
Total HxCDD isomers	0.018	0.13	16
Total HpCDF isomers	<0.01	<0.08	<10
Total HpCDD isomers	0.011	0.08	9.8
Total PCDDs + PCDFs	0.47	3.5	420
WHO05-TEQ			
Lower Bound	0.0029	0.021	2.6
Middle Bound	0.0057	0.043	5.2
Upper Bound	0.0086	0.064	7.8

Abbreviations and definitions

WHO05-TEQ World Health Organisation toxic equivalents for dioxins and furans

Lower Bound Defines values reported below detection as equal to zero.

Middle Bound Defines values reported below detection are equal to half the detection limit.

Upper Bound Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency factor.

Isokinetic Sampling Parameters	Results
Dioxins & Furans	
Sampling time, min	128
Isokinetic rate, %	106

Report No.: R014868a Date: 16/02/2024 Page: 8 of 17

Date	4/10/2023	Client	VIP Drum Reconditioners		
Report	R014868	Stack ID	EPA 1 - Afterburner Discharge Stack		
Licence No.	124	Location	Seven Hills		
Ektimo Staff	Graham Edwards, Ish Alam, Sahad Musthafa	State	NSW		
Process Conditions	Please refer to client records.			230914	

Stack Parameters			
Moisture content, %v/v	2.9		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	0.72		
% Oxygen correction & Factor	3 %	13.70	
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0900		
Temperature, °C	212		
Temperature, K	485		
Velocity at sampling plane, m/s	33		
Volumetric flow rate, actual, m³/s	28		
Volumetric flow rate (wet STP), m³/s	16		
Volumetric flow rate (dry STP), m³/s	15		
Mass flow rate (wet basis), kg/h	73000		

Halides & Halogens e.g HCl, Cl2, HF	Results	
Sampling time	0950-1115	
	Corrected	
	Concentration to 3% O2 M mg/m³ mg/m³	Mass Rate g/min
Chloride (as HCl)	0.33 4.5	0.3
Chlorine	0.13 1.8	0.12

Total VOCs (as n-Propane)	Results
	Corrected
	Concentration to 3% O2 Mass Rate mg/m³ mg/m³ g/min
Total	<0.1 <2 <0.1

VOC (speciated)		Results			
Sa	mpling time		0958-1115		
			Corrected		
		Concentration	to 3% O2	Mass Rate	
		mg/m³	mg/m³	g/min	
Detection limit ⁽¹⁾		<0.2	<2	<0.1	

(1) Unless otherwise reported, the following target compounds were found to be below detection:
Ethanol, Acetone, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1+Trichloroethane, 1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Ethyl acrylate, Trichloroethylene, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, Toluene, 1,1,2-Trichloroethane, 2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m+p-Xylene, 1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Report No.: R014868a Date: 16/02/2024 Page: 9 of 17

Date	4/10/2023	Client	VIP Drum Reconditioners	
Report	R014868	Stack ID	EPA 1 - Afterburner Discharge Stack	
Licence No.	124	Location	Seven Hills	
Ektimo Staff	Graham Edwards, Ish Alam, Sahad Musthafa	State	NSW	
Process Conditions	Please refer to client records.			230914

Stack Parameters			
Moisture content, %v/v	1.6		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	0.73		
% Oxygen correction & Factor	3 %	12.70	
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1310		
Temperature, °C	211		
Temperature, K	484		
Velocity at sampling plane, m/s	33		
Volumetric flow rate, actual, m³/s	28		
Volumetric flow rate (wet STP), m³/s	16		
Volumetric flow rate (dry STP), m³/s	15		
Mass flow rate (wet basis), kg/h	72000		

Isokinetic Results	Results
Sampling time	1320-1445
	Corrected
	Concentration to 3% O2 Mass Rate mg/m³ mg/m³ g/min
Antimony	0.019 0.24 0.017
Arsenic	<0.002 <0.03 <0.002
Cadmium	<0.0005 <0.007 <0.0005
Lead	0.0098 0.12 0.009
Mercury	<0.0008 <0.01 <0.0008
Total Type 1 Substances	≤0.033 ≤0.41 ≤0.03
Isokinetic Sampling Parameters	
Sampling time, min	80
Isokinetic rate, %	100

Report No.: R014868a Date: 16/02/2024 Page: 10 of 17

Ektimo

Date 4/10/2023 Client VIP Drum Reconditioners EPA 1 - Afterburner Discharge Stack Seven Hills Report R014868 Stack ID Licence No. Location Ektimo Staff Graham Edwards, Ish Alam, Sahad Musthafa NSW State **Process Conditions** Please refer to client records.

Stack Parameters			
Moisture content, %v/v	2.1		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	0.72		
% Oxygen correction & Factor	3 %	12.70	
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1310		
Temperature, °C	212		
Temperature, K	485		
Velocity at sampling plane, m/s	33		
Volumetric flow rate, actual, m³/s	28		
Volumetric flow rate (wet STP), m ³ /s	16		
Volumetric flow rate (dry STP), m³/s	15		
Mass flow rate (wet basis), kg/h	72000		

Isokinetic Results	Results		
Samplingtime		1320-1445	
	Corrected to		
	Concentration mg/m³	12% CO2 mg/m³	Mass Rate g/min
Solid Particles	19	270	17
		Corrected to	
	Concentration	3% O2	Mass Rate
	mg/m³	mg/m³	g/min
Sulfur trioxide and/or Sulfuric acid (as SO3)	0.17	2.2	0.16
Isokinetic Sampling Parameters			
Sampling time, min		80	
Isokinetic rate, %		100	
Gravimetric analysis date (total particulate)		09-10-2023	

Report No.: R014868a Date: 16/02/2024 Page: 11 of 17

Ektimo

Date	18/10/2023	Client	VIP Drum Reconditioners	
Report	R014868	Stack ID	EPA 1 - Afterburner Discharge Stack	
Licence No.	124	Location	Seven Hills	
Ektimo Staff	Graham Edwards, James Cullen	State	NSW	
Process Conditions	Please refer to client records.			231003

Stack Parameters			
Moisture content, %v/v	3.2		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.30 (dry)	
Gas density at discharge conditions, kg/m³	0.73		
% Oxygen correction & Factor	3 %	13.87	
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1030		
Temperature, °C	211		
Temperature, K	484		
Velocity at sampling plane, m/s	33		
Volumetric flow rate, actual, m³/s	27		
Volumetric flow rate (wet STP), m ³ /s	16		
Volumetric flow rate (dry STP), m³/s	15		
Mass flow rate (wet basis), kg/h	72000		

Gas Analyser Results		Average	Minimum	Maximum
	Sampling time	1100 - 1335	1100 - 1335	1100 - 1335
		Concentration %v/v	Concentration %v/v	Concentration %v/v
Carbon dioxide		0.8	0.6	1.2
Oxygen		19.6	19.2	20

Hydrogen Sulfide (Method 11)	Results
Samplingtime	1020-1330
	Corrected to
	Concentration 3% O2 Mass Rate mg/m³ mg/m³ g/min
Hydrogen Sulfide	<0.1 <2 <0.1

Hydrogen Sulfide (Ektimo 255)		Results			
San	mpling time	1020-1330			
		Corrected to			
		Concentration mg/m³	3% O2 mg/m³	Mass Rate g/min	
Hydrogen Sulfide		0.0074	0.1	0.0067	

Isokinetic Results	Results			
Samplingtime	1130-1320			
	Corrected to			
	Concentration 3% O2 Mass Rate mg/m³ mg/m³ g/min			
Total fluoride (as HF)	0.051 0.71 0.046			
Isokinetic Sampling Parameters				
Sampling time, min	80			
Isokinetic rate, %	101			

Report No.: R014868a Date: 16/02/2024 Page: 12 of 17

Ektimo

2.2 EPA 2 – Cooling Air Vent

Date18/10/2023ClientVIP Drum ReconditionersReportR014868Stack IDEPA 2 - Cooling Air Vent

Licence No.124LocationSeven HillsEktimo StaffGraham Edwards, James CullenStateNSW

Process Conditions Please refer to client records. 231003

Comments

Slot width is 160mm this year

The number of points sampled is less than the requirement
The discharge is assumed to be composed of dry air and moisture

Stack Parameters			
Moisture content, %v/v	1		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.08		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1350		
Temperature, °C	55		
Temperature, K	328		
Velocity at sampling plane, m/s	22		
Volumetric flow rate, actual, m³/s	16		
Volumetric flow rate (wet STP), m ³ /s	14		
Volumetric flow rate (dry STP), m³/s	14		
Mass flow rate (wet basis), kg/h	63000		

Report No.: R014868a Date: 16/02/2024 Page: 13 of 17

Ektimo

3 **Sample Plane Compliance**

3.1 EPA 1 – Afterburner Discharge Stack

Sampling Plane Details

Source tested Exhaust vent 1035 mm Sampling plane dimensions 0.841 m² Sampling plane area 4" BSP (x2), 80 mm Sampling port size, number & depth Duct orientation & shape Vertical Circular Downstream disturbance Exit 7 D Upstream disturbance Change in diameter 3 D

No. traverses & points sampled Conforming but non-ideal Sample plane conformance to AS 4323.1

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

2 16

3.2 EPA 2 – Cooling Air Vent

Sampling Plane Details

Source tested Exhaust vent Sampling plane dimensions 4555 x 160 mm Sampling plane area 0.729 m² Sampling port size, number & depth NA, 0 mm Duct orientation & shape Horizontal Rectangular Downstream disturbance Change in diameter 0 D Upstream disturbance Change in diameter 0 D No. traverses & points sampled 4 4 Sample plane conformance to AS 4323.1 Non-conforming

The sampling plane is deemed to be non-conforming due to the following reasons:

The downstream disturbance is <1D from the sampling plane The upstream disturbance is <2D from the sampling plane

Plant Operating Conditions

See VIP Drum Reconditioners records for complete process conditions.

Based on information received from VIP Drum Reconditioners' personnel, it is our understanding that samples were collected during typical plant operations.

Report No.: R014868a Date: 16/02/2024 Page: 14 of 17

Ektimo

5 Test Methods

All sampling and analysis were performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

Parameter	Sampling method	Analysis method	Uncertainty*	NATA ac	credited Analysis
Compling points Cologtion	NSW EPA TM-1	NA	NA	✓	NA
Sampling points - Selection	(USEPA Method 1)	NA	NA	•	NA
Flow rate, temperature & velocity	NSW EPA TM-2	NSW EPA TM-2	8%, 2%, 7%	NA	✓
Flow rate, temperature & velocity	(USEPA Method 2)	(USEPA Method 2)	0/0, 2/0, 7/0	IVA	•
Moisture content	NSW EPA TM-22	NSW EPA TM-22	8%	✓	✓
Moisture content	(USEPA Method 4)	(USEPA Method 4)	070	•	•
Molecular weight	NA	NSW EPA TM-23 (USEPA Method 3)	not specified	NA	✓
		NSW EPA TM-23			
Dry gas density	NA	(USEPA Method 3)	not specified	NA	✓
	NSW EPA TM-24	NSW EPA TM-24			
Carbon dioxide	(USEPA Method 3A)	(USEPA Method 3A)	13%	✓	✓
	NSW EPA TM-32	NSW EPA TM-32			
Carbon monoxide	(USEPA Method 10)	(USEPA Method 10)	12%	✓	✓
	NSW EPA TM-11	NSW EPA TM-11		√	√
Nitrogen oxides	(USEPA Method 7E)	(USEPA Method 7E)	12%	•	✓
	NSW EPA TM-25	NSW EPA TM-25	420/	√	√
Oxygen	(USEPA Method 3A)	(USEPA Method 3A)	13%	✓	✓
Hydrogen sulfide	Ektimo 255	Ektimo 255	not specified	✓	√ †
11	NSW EPA TM-5	NICIAL ED A TA A E	:6:	✓	√ †
Hydrogen sulfide	(USEPA Method 11)	NSW EPA TM-5	not specified	•	•
Speciated volatile organic compounds	NSW EPA TM-34 ^d	Ektimo 344	19%	✓	√ †
(VOCs)	(USEPA Method 18)	EKUIIIO 344	19%	•	•
Solid particles (total)	NSW EPA TM-15	NSW EPA TM-15	3%	✓	✓ ^{††}
Solid particles (total)	(AS 4323.2)	(AS 4323.2)	370	<u> </u>	
Type 1 substances (As, Cd, Hg, Pb, Sb)	NSW EPA TM-12	Envirolab in-house methods	15%	✓	√ ‡
17 pc 13 ubstances (A3, eu, 11g, 1 b, 3b)	(USEPA Method 29)	Metals-020/021/022	1370	•	•
Dioxins & furans (PCDDs & PCDFs)	NSW EPA TM-18	NMI in-house method	16%	✓	√¶
DIOXIIIS & Idialis (FCDDs & FCDIs)	(USEPA Method 23)	AUTL_MET_02	10/0	<u> </u>	· · · · · · · · · · · · · · · · · · ·
Fluorine & fluorine compounds ¹	NSW EPA TM-9	Ektimo 235	25%	✓	√ †
Tradiffic & fluorific compounds	(USEPA Method 13B)	ERMINO 255	23/0		•
Hydrogen chloride	NSW EPA TM-8	Ektimo 235	14%	✓	√ ^{†i}
	(USEPA Method 26A)		2.,,		,
Chlorine	NSW EPA TM-7	Ektimo 235	14%	✓	√ ^{†i}
	(USEPA Method 26A)				
Sulfuric acid mist and/or sulfur trioxide	NSW EPA TM-3 (USEPA Method 8)	Ektimo 235	16%	✓	✓ ^{†m}
					151123

151123

^{*} Uncertainties cited in this table are estimated using typical values and are calculated at the 95% confidence level (coverage factor = 2).

[¶] Analysis performed by Australian Government National Measurement Institute, NATA accreditation number 198. Results were reported to Ektimo on 13 November 2023 in report DAU23_264.

[†] Analysis performed by Ektimo. Results were reported to Ektimo on.

¹⁶ October 2023 in report LV-004988.

¹⁶ October 2023 in report LV-004993.

¹⁸ October 2023 in report LV-005002.

³¹ October 2023 in report LV-005052.

³ November 2023 in report LV-005064.

³ November 2023 in report LV-005086.

 $^{^{\}dagger\dagger}$ Gravimetric analysis conducted at the Ektimo NSW laboratory.

[‡] Analysis performed by Envirolab, NATA accreditation number 2901. Results were reported to Ektimo on 12 October 2023 in report 334654.

¹ Sampling follows USEPA Method 13B and analysis follows Ektimo 235 (ion chromatography which uses the same principle as the NSW EPA approved alternative analysis method USEPA SW-846 Method 9056A).

^d Excludes recovery study as specified in section 8.4.3 of USEPA Test Method 18.

¹ Includes analysis of chlorine/chloride by Ektimo 235 which uses the same principle as USEPA Method 26/26A.

[™] Includes analysis of SO₃/H₂SO₄ by Ektimo 235 which uses the same principle as USEPA SW-846 Method 9056A which is an approved alternative to the analytical procedure of USEPA Method 8.

Report No.: R014868a Date: 16/02/2024 Page: 15 of 17

Ektimo

6 Deviations to Test Methods

HYDROGEN SULFIDE

The hydrogen sulfide result (sampled on 7 June 2022) was performed via Ektimo Method 255 (based on Vic EPA Method B18; UV-Vis, colorimetric detection).

Ektimo Method 255 comprises sampling into an impinger solution containing an alkaline cadmium hydroxide suspension.

The hydrogen sulfide in the sample is precipitated as cadmium sulfide and the collected sulfide is determined spectrophotometrically at 670nm by measuring methylene blue. The methylene blue is produced by reaction of sulfide with an acid solution of N,N-dimethyl-p-phenylenediamine and ferric chloride.

Use of Ektimo Method 255 provides for a significantly lower detection limit than USEPA Method 11. A lower detection limit may be necessary at this location because the measured hydrogen sulfide concentration is subject to 3% oxygen correction. Please note, that hydrogen sulfide was also sampled via USEPA 11 (NSW TM-5).

NSW EPA TM-34 (USEPA 18)

Ektimo notes that the sampling and analysis of Volatile Organic Compounds (VOCs), per USEPA Method 18 has excluded the recovery study as specified in Section 8.4.3. Performing the recovery study described in Section 8.4.3 of USEPA Method 18 for analytes present at low levels is problematic. Given this, Ektimo applies a threshold of 50μg as a lower-bound mass, below which the 'spiking' of specific volatile organic compounds is not performed. For the purposes of this round of monitoring, all compounds were below 50μg. Therefore, recovery studies were not performed.

7 Quality Assurance/Quality Control Information

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through mutual recognition arrangements with these organisations, NATA accreditation is recognised worldwide.

Unless specifically noted, all samples were collected and handled in accordance with Ektimo's QA/QC standards.

Report No.: R014868a Date: 16/02/2024 Page: 16 of 17

Ektimo

8 **Definitions**

The following symbols and abbreviations may be used in this test report:

Volume to volume ratio

Approximately Less than < > Greater than

≥ Greater than or equal to AS Australian Standard

Duct diameter or equivalent duct diameter for rectangular ducts D

DECC Department of Environment & Climate Change (NSW)

Disturbance A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes

centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes

or changes in pipe diameter.

EPA **Environment Protection Authority FTIR** Fourier transform infra-red

Intersociety Committee, Methods of Air Sampling and Analysis ISC

ISO International Organisation for Standardisation

ITE Individual threshold estimate

Lower bound When an analyte is not present above the detection limit, the result is assumed to be equal to zero.

When an analyte is not present above the detection limit, the result is assumed to be equal to half of the detection limit. Medium bound

NA Not applicable

NATA National Association of Testing Authorities Not tested or results not required NT

Semi-quantified VOCs Unknown VOCs (those for which an analytical standard is not available), are identified by matching the mass spectrum of

the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration is determined by matching the area of the peak with the nearest suitable compound in the analytical calibration standard mixture.

STP Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0 °C, at discharge

oxygen concentration and an absolute pressure of 101.325 kPa.

Total organic carbon. This is the sum of all compounds of carbon which contain at least one carbon-to-carbon bond, plus TOC

methane and its derivatives.

USEPA United States Environmental Protection Agency

Verein Deutscher Ingenieure (Association of German Engineers)

Velocity difference The percentage difference between the average of initial flows and after flows.

 $Volatile\ organic\ compound.\ A\ carbon-based\ chemical\ compound\ with\ a\ vapour\ pressure\ of\ at\ least\ 0.010\ kPa\ at\ 25^\circC\ or\ at\$ VOC

having a corresponding volatility under the given conditions of use. VOCs may contain oxygen, nitrogen and other elements. VOCs do not include carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.

WHO05-TEQ World Health Organisation toxic equivalents

XRD X-ray diffractometry

Upper bound When an analyte is not present above the detection limit, the result is assumed to be equal to the detection limit.

95% confidence interval Range of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result is outside

this range.

Report No.: R014868a Date: 16/02/2024 Page: 17 of 17

Ektimo

9 Appendices

Appendix A: Site Images

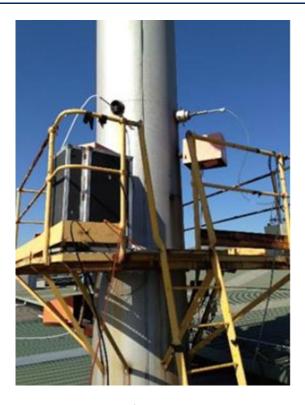
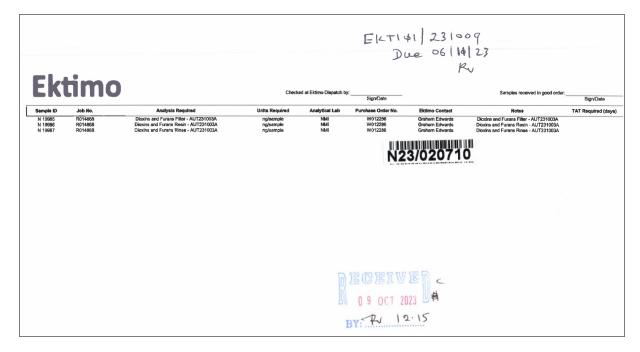
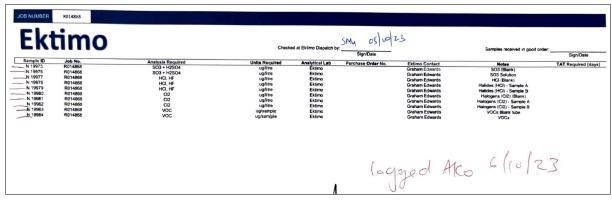


Image 1. EPA 1 – Afterburner Discharge Stack


Image 3. EPA 2 – Cooling Air Vent


Report No.: R014868a **Date**: 16/02/2024

Ektimo

Appendix B: Chain(s) of Custody

JOB NUMBER	R014868							
	•						0	
Ekt	im	$\mathbf{\cap}$			SMU (10)	13	Phy 1	5/10/13
			Check	ed at Ektimo Dispatch by	SigniDate		Samples received in good order: [12] I	ale
Sample ID	Job No.	Analysis Required	Units Required	Analytical Lab	Purchase Order No.	Ektimo Contact	Notes TAT Require	d (days)
N 19965 /	R014868	Metals - Type 1 & 2 substances (Sb, As, Cd, Pb, Hg, Bu, Cr, Co, Mn, Nl, Se, V, Sn)	ug/samples	Envirolab	W012270	Graham Edwards	Filter (Blank)	
N 19966 Z	R014868	Motals - Type 1 & 2 substances (Sb, As, Cd, Pb, Hg, Be, Cr, Co, Mn, Ni, Se, V, Sn)	ug/samples	Envirolab	W012270	Graham Edwards	Filter (Sample)	
N 19967 Z	R014868	Metals - Type 1 & 2 substances (Sb. As, Cd. Pb. Hg. Be, Cr, Co. Mn, Ni, Se, V, Se)	ughitre	Envirolab	W012270	Graham Edwards	Solution (Blank)	
N 19968 4	R014858	Metals - Type 1 & 2 substances (Sb, As, Cd, Pb, Hg, Be, Cr, Co, Mn, Ni, Se, V, So)	etilleu	Envirolab	W012270	Graham Edwards	tropinger 1-4	
N 19969 5	R014868	Metals - Type 1 & 2 substances (Sb, As, Cd, Pb, Hg, Be, Cr, Co, Mn, Ni, Se, V, Sn)	ugflitre	Envirolab	W012270	Graham Edwards	Impinger Rinse (Blank)	
N 199706	R014868	Metals - Type 1 & 2 substances (Sb, As, Cd, Pb, Hg, Be, Cr, Co, Mn, Ni, Se, V, Sn)	ug/litre	Envirolab	W012270	Graham Edwards	Impinger Rinse	
N 189717	R014868	Hg	ug/titre	Envirolab	W012270	Graham Edwards	Impinger 5-6 (Blank)	
N 19972 8	R014868	Hg	ug/fitre	Envirolab	W012270	Graham Edwards	Impinger 5-6	
N 19973 P	R014868 R014868	Ho Hg	ugfitre ugfitre	Envirolab Envirolab	W012270 W012270	Graham Edwards Graham Edwards	HCI Rinse (Blank) HCI Rinse	
						Job No: Date Receive Time Received By: Temp: Cooling Legi	Antibient R	

Report No.: R014868a **Date:** 16/02/2024

Ektimo

Appendix C: Laboratory Results

\(1300 364 005

\(+61 2 4003 3296

accounts@ektimo.com.au

ektimo.com.au

CERTIFICATE OF ANALYSIS

Testing Laboratory: Ektimo

26 Redland Drive

Mitcham, VIC 3132

Report Number: LV-005064 Job Number: R014868 Date of Issue: 3/11/2023

Attention: **VIP Drum Reconditioners** Address: 30-32 Powers Rd

Seven Hills, NSW 2147

Date samples received: 24/10/2023

Number of samples received:

Date samples analysed: 1/11/2023

No of samples analysed: 2

Ektimo 235 Test method(s) used:

Comments

QC Acceptance Criteria:	Parameter	Criteria	Pass/Fail
	Standard Curve	$R^2 > 0.99$	Pass
	Range	All samples <110% of highest standard	Pass
	Repeat samples	Between 80% - 120%	Pass
	Method Blanks	All method blanks < PQL	Pass
	QC sample	2 standard deviations of theoretical	Pass
	Chemical Expiry	All chemicals within expiry date	Pass

This report supersedes any previous report(s) with this reference. Sample(s) have been analysed as received.

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised world –wide.

A formal Quality Control program is in place at Ektimo to monitor analyses performed in the laboratory and sampling conducted in the field. The program is designed to check where appropriate; the sampling reproducibility, analytical method, accuracy, precision and the performance of the analyst. The Laboratory Manager is responsible for the administration and maintenance of this program.

REPORT AUTHORISATION

Version 230707

Cappi Tuffery **Laboratory Chemist**

Daniel Balaam Senior Laboratory Chemist

NATA Accredited Laboratory 14601

Accredited for compliance with ISO/IEC 17025. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports

Analytical Results

Report No. LV-005064 Job No. R014868

Client Name: VIP Drum Reconditioners

Parameter	Analyte	Units	N 20162 VIP Drum Reconditioners EPA 1 Blank (HF)	N 20163 VIP Drum Reconditioners EPA 1 Filter + Solution
Sample Volume		mL	350	330
Hydrogen fluoride (HF)	F ⁻	mg/L	<0.1	0.20
PQL	<	mg/L	0.1	0.1

Ektimo

**** 1300 364 005

4 +61 2 4003 3296

🔀 info@ektimo.com.au

https://ektimo.com.au

CERTIFICATE OF ANALYSIS

Testing Laboratory: Ektimo

26 Redland Drive

Mitcham, VIC 3132

Client: VIP Drum Reconditioners

Report Number: LV-005086

Job Number: R014868

Date of Issue: 8/11/2023

Attention: VIP Drum Reconditioners

Address: 30-32 Powers Rd

Seven Hills, NSW 2147

Date samples received: 24/10/2023

Number of samples received:

2 3/11/2023

Date samples analysed: 3/11/2023

No of samples analysed: 2

Test method(s) used: USEPA Method 11

Comments

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources; unless otherwise stated, the test method used falls within the scope of Ektimo's NATA accreditation. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised world—wide.

A formal Quality Control program is in place at Ektimo to monitor analyses performed in the laboratory and sampling conducted in the field. The program is designed to check where appropriate; the sampling reproducibility, analytical method, accuracy, precision and the performance of the analyst. The Laboratory Manager is responsible for the administration and maintenance of this program.

REPORT AUTHORISATION

Version 160223

Annie Kolokithas Laboratory Technician

Daniel Balaam Senior Laboratory Chemist

NATA Accredited Laboratory 14601

Analytical Results

Report No. LV-005086 Job No. R014868

Client Name: VIP Drum Reconditioners

Sample ID	Location	Sample name	Observations	As received sample volume (ml)	Volume analysed (ml)	H ₂ S mass in impinger solution (μg)
N20157	EPA 1	BLANK	Nil odour, Clear	43	43	< 42.6
N20158	EPA 1	Impinger 3-5	Slight odour, Clear	43	43	< 42.6

**** 1300 364 005

4003 3296

info@ektimo.com.au

https://ektimo.com.au

CERTIFICATE OF ANALYSIS

Testing Laboratory: Ektimo

26 Redland Drive

Mitcham, VIC 3132

Report Number:

 Job Number:
 R014868

 Date of Issue:
 31/10/2023

Attention: Ektimo Adminstration

Address: 26 Redland Dr

Mitcham, VIC, 3132

Date samples received: 24/10/2023

Number of samples received: 3

Date samples analysed: 26/10/2023

Number of samples analysed: 3

Test method(s) used: Ektimo 255

Comments

QC Acceptance Criteria: Parameter Criteria Pass/Fail

Standard CurveR² > 0.99PASSRangeAll samples <100% of highest standard.</td>PASSQC sample2 standard deviations of theoretical.PASSChemical expiryAll chemicals within expiry date.PASSHolding timeAll samples analysed within 3 day holding time.FAIL

This report supersedes any previous report(s) with this reference. Sample(s) have been analysed as received.

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised world—wide.

A formal Quality Control program is in place at Ektimo to monitor analyses performed in the laboratory and sampling conducted in the field. The program is designed to check where appropriate; the sampling reproducibility, analytical method, accuracy, precision and the performance of the analyst. The Laboratory Manager is responsible for the administration and maintenance of this program.

REPORT AUTHORISATION

Version 220412

NATA Accredited Laboratory 14601

Matthew Cook

Laboratory Manager

Daniel Balaam Senior Laboratory Chemist

Accredited for compliance with ISO/IEC 17025. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports

Report No. R014868 Job No. LV-005052

Client Name: VIP Drum Reconditioners

Sample ID	Location	Sample Name	Observations	Volume (mL)	H ₂ S Concentration (µg/L)	PQL < (μg/L)
N 20159	EPA 1	H2S Blank (UV VIS)	Nil odour, no discolouration	440	< 29.95	29.95
N 20160	EPA 1	H2S A (UV VIS)	Slight odour, no discolouration	20	85.42	34.44
N 20161	EPA 1	H2S B (UV VIS)	Slight odour, no discolouration	15	46.84	45.93

^{*} Results marked with an asterisk are outside the acceptable calibration range of the instrument.

\(1300 364 005

\(+61 2 4003 3296

accounts@ektimo.com.au

ektimo.com.au

CERTIFICATE OF ANALYSIS

Testing Laboratory: Ektimo

26 Redland Drive

Mitcham, VIC 3132

Report Number: LV-004993 Job Number: R014868 Date of Issue: 16/10/2023

Attention: VIP DRUM RECONDITIONERS

Address: 30-32 Powers Rd

Seven Hills, NSW 2147

Date samples received: 6/10/2023

Number of samples received:

Date samples analysed: 9/10/2023

No of samples analysed: 2

Ektimo 235 Test method(s) used:

Comments

QC Acceptance Criteria: **Parameter** Criteria Pass/Fail $R^2 > 0.99$ Standard Curve **Pass** All samples <110% of highest standard Range Pass Between 80% - 120% Repeat samples **Pass Method Blanks** All method blanks < PQL **Pass** QC sample 2 standard deviations of theoretical Pass **Chemical Expiry** All chemicals within expiry date **Pass**

This report supersedes any previous report(s) with this reference. Sample(s) have been analysed as received.

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised world –wide.

A formal Quality Control program is in place at Ektimo to monitor analyses performed in the laboratory and sampling conducted in the field. The program is designed to check where appropriate; the sampling reproducibility, analytical method, accuracy, precision and the performance of the analyst. The Laboratory Manager is responsible for the administration and maintenance of this program.

REPORT AUTHORISATION

Version 230707

Cappi Tuffery **Daniel Balaam Laboratory Chemist** Senior Laboratory Chemist

NATA Accredited Laboratory 14601

Accredited for compliance with ISO/IEC 17025. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports

Report No. LV-004993 Job No. R014868

Client Name: VIP DRUM RECONDITIONERS

Parameter	Analyte	Units	N 19975 VIP Drum Reconditioners EPA1 SO3 Solution (SO3 + H2SO4)	N 19976 VIP Drum Reconditioners EPA1 SO3 Solution
Sample Volume		mL	150	158
Sulfur trioxide (SO ₃)	SO ₄ ²⁻	mg/L	<0.2	1.80
Sulfuric acid (H ₂ SO ₄)	SO ₄ ²⁻	mg/L	<0.2	1.80
PQL	<	mg/L	0.2	0.2

\(1300 364 005

\(+61 2 4003 3296

accounts@ektimo.com.au

ektimo.com.au

CERTIFICATE OF ANALYSIS

Testing Laboratory: Ektimo

26 Redland Drive

Mitcham, VIC 3132

LV-005002 Report Number: Job Number: R014868 Date of Issue: 18/10/2023

Attention: **VIP Drum Reconditioners**

Address: 30-32 Powers Rd

Seven Hills, NSW 2147

Date samples received: 6/10/2023

Number of samples received:

Date samples analysed: 18/10/2023

No of samples analysed:

Ektimo 344 Test method(s) used:

Comments

QC Acceptance Criteria:	Parameter	Criteria	Pass/Fail
	Standard Curve	$R^2 > 0.99$	Pass
	Range	All samples <110% of highest standard	Pass
	Repeat samples	Between 80% - 120%	Pass
	Method Blanks	All method blanks < PQL	Pass
	QC sample	2 standard deviations of theoretical	Pass
	Chemical Expiry	All chemicals within expiry date	Pass

This report supersedes any previous report(s) with this reference. Sample(s) have been analysed as received.

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised world –wide.

A formal Quality Control program is in place at Ektimo to monitor analyses performed in the laboratory and sampling conducted in the field. The program is designed to check where appropriate; the sampling reproducibility, analytical method, accuracy, precision and the performance of the analyst. The Laboratory Manager is responsible for the administration and maintenance of this program.

REPORT AUTHORISATION

Version 230707

Matthew Cook Laboratory Manager

Daniel Balaam Senior Laboratory Chemist

NATA Accredited Laboratory 14601

Accredited for compliance with ISO/IEC 17025. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports

Analytical Results

Report No. LV-005002 Job No. R014868

Client Name: VIP Drum Reconditioners

Parameter	Units	N19983 R014868	N19984 R014868
	PQL	2.0	2.0
Ethanol	μд	<2	<2
Acetone	μg	<2	<2
Isopropanol	μg	<2	<2
Pentane	μg	<2	<2
1,1-Dichloroethene	μg	<2	<2
Acrylonitrile	μg	<2	<2
Dichloromethane	μg	<2	<2
trans-1,2-Dichloroethene	μg	<2	<2
Methyl ethyl ketone	μg	<2	<2
In-Hexane	μg	<2	<2
cis-1,2-Dichloroethene	μg	<2	<2
Ethyl acetate		<2	<2
Chloroform	μg	<2	<2
1,1,1-Trichloroethane		<2	<2
1,2-Dichloroethane	μg	<2	<2
·	μg	<2	<2
Cyclohexane	μg	<2	<2
Benzene	μg		
Carbon tetrachloride	μg	<2	<2
Butanol	μg	<2	<2
Isopropyl acetate	μg	<2	<2
2-Methylhexane	μg	<2	<2
2,3-Dimethylpentane	μg	<2	<2
1-Methoxy-2-propanol	μg	<2	<2
3-Methylhexane	μg	<2	<2
Heptane	μg	<2	<2
Ethyl acrylate	μg	<2	<2
Trichloroethylene	μg	<2	<2
Methyl methacrylate	μg	<2	<2
Propyl acetate	μg	<2	<2
Methylcyclohexane	μg	<2	<2
Methyl Isobutyl Ketone	μg	<2	<2
Toluene	μg	<2	<2
1,1,2-Trichloroethane	μg	<2	<2
2-Hexanone	μg	<2	<2
Octane	μg	<2	<2
Tetrachloroethene	μg	<2	<2
Butyl acetate	μg	<2	<2
Chlorobenzene	μg	<2	<2
Ethylbenzene	μg	<2	<2
m + p-Xylene	μg	<2	<2
1-Methoxy-2-propyl acetate	μg	<2	<2
Styrene	μg	<2	<2
o-Xylene	μg	<2	<2
Butyl acrylate	μg	<2	<2
Nonane	μg	<2	<2

^{*} Results marked with an asterisk are outside the acceptable calibration range of the instrument.

Analytical Results

Report No. LV-005002 Job No. R014868

Client Name: VIP Drum Reconditioners

Parameter	Units	N19983 R014868	N19984 R014868
	PQL	2.0	2.0
2-Butoxyethanol	μg	<2	<2
Cellosolve acetate	μg	<2	<2
1,1,2,2-Tetrachloroethane	μg	<2	<2
Isopropylbenzene	μg	<2	<2
alpha-Pinene	μg	<2	<2
Propylbenzene	μg	<2	<2
1,3,5-Trimethylbenzene	μg	<2	<2
beta-Pinene	μg	<2	<2
tert-Butylbenzene	μg	<2	<2
1,2,4-Trimethylbenzene	μg	<2	<2
Decane	μg	<2	<2
3-Carene	μg	<2	<2
1,2,3-Trimethylbenzene	μg	<2	<2
D-Limonene	μg	<2	<2
Undecane	μg	<2	<2
Dodecane	μg	<2	<2
Tridecane	μg	<2	<2
Tetradecane	μg	<2	<2
Residuals as Toluene	μg	<2	<2

NATA

\(1300 364 005

\(+61 2 4003 3296

accounts@ektimo.com.au

ektimo.com.au

CERTIFICATE OF ANALYSIS

Testing Laboratory: Ektimo

26 Redland Drive

Mitcham, VIC 3132

Report Number: LV-004988 Job Number: R014868 Date of Issue: 16/10/2023

Attention: **VIP Drum Reconditioners** Address: 30-32 Powers Rd

Seven Hills, NSW 2147

Date samples received: 6/10/2023

Number of samples received:

Date samples analysed: 16/10/2023

No of samples analysed:

Ektimo 235 Test method(s) used:

Comments

QC Acceptance Criteria:	Parameter	Criteria	Pass/Fail
	Standard Curve	$R^2 > 0.99$	Pass
	Range	All samples <110% of highest standard	Pass
	Repeat samples	Between 80% - 120%	Pass
	Method Blanks	All method blanks < PQL	Pass
	QC sample	2 standard deviations of theoretical	Pass
	Chemical Expiry	All chemicals within expiry date	Pass

This report supersedes any previous report(s) with this reference. Sample(s) have been analysed as received.

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised world –wide.

A formal Quality Control program is in place at Ektimo to monitor analyses performed in the laboratory and sampling conducted in the field. The program is designed to check where appropriate; the sampling reproducibility, analytical method, accuracy, precision and the performance of the analyst. The Laboratory Manager is responsible for the administration and maintenance of this program.

REPORT AUTHORISATION

Version 230707

Cappi Tuffery **Daniel Balaam Laboratory Chemist Senior Laboratory Chemist**

NATA Accredited Laboratory 14601

Accredited for compliance with ISO/IEC 17025. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports

Ektimo

Analytical Results

Report No. LV-004988 Job No. R014868

Client Name: VIP Drum Reconditioners

Parameter	Analyte	Units	N 19977 VIP Drum Reconditioners EPA1 HCI Blank (HCI, HF)	N 19978 VIP Drum Reconditioners EPA1 Halides HCI - Sample A	N 19979 VIP Drum Reconditioners EPA1 Halides HCI - Sample B	N 19980 VIP Drum Reconditioners EPA1 Halogens Cl2 Blank (Cl2)	Reconditioners	N 19982 VIP Drum Reconditioners EPA1 Halogens CI2 Sample B
	ı							
Sample Volume		mL	24	16.5	12.5	25	13	11.5
Hydrogen chloride (HCl)	Cl	mg/L	<0.1	1.83	0.71			
Chlorine (Cl ₂)	Cl	mg/L				0.24	0.70	0.95
Hydrogen fluoride (HF)	F ⁻	mg/L	<0.1	1.23	0.19			
PQL	<	mg/L	0.1	0.1	0.1	0.1	0.1	0.1

^{*} Results marked with an asterisk are outside the acceptable calibration range of the instrument.

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 334654

Client Details	
Client	Ektimo (Unanderra)
Attention	Graham Edwards
Address	1/251 Princes Hwy, Unanderra, NSW, 2526

Sample Details	
Your Reference	R014868
Number of Samples	2 Filter, 8 Water
Date samples received	05/10/2023
Date completed instructions received	05/10/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details						
Date results requested by	12/10/2023					
Date of Issue	12/10/2023					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *						

Results Approved By

Loren Bardwell, Development Chemist

Authorised By

Nancy Zhang, Laboratory Manager

Metals on filters			
Our Reference		334654-1	334654-2
Your Reference	UNITS	N19965	N19966
Type of sample		Filter	Filter
Date prepared	-	12/10/2023	12/10/2023
Date analysed	-	12/10/2023	12/10/2023
Antimony	μg/filter	<5	20
Arsenic	μg/filter	<2	<2
Cadmium	μg/filter	<0.5	<0.5
Lead	μg/filter	<1	9
Mercury	μg/filter	<0.2	<0.2
Beryllium	μg/filter	<0.5	<0.5
Chromium	μg/filter	2	9.0
Cobalt	μg/filter	<0.5	2
Manganese	μg/filter	<0.5	1
Nickel	μg/filter	<1	<1
Selenium	μg/filter	<5	<5
Vanadium	μg/filter	<1	<1
Tin	μg/filter	<2	<2

Metals in water - mass units						
Our Reference		334654-3	334654-4	334654-5	334654-6	334654-7
Your Reference	UNITS	N19967	N19968	N19969	N19970	N19971
Type of sample		Water	Water	Water	Water	Water
Volume	mL	210	253	198	243	368
Antimony	hã	<0.5	<0.5	<0.5	<0.5	[NA]
Arsenic	μg	<0.5	<0.5	<0.5	<0.5	[NA]
Cadmium	hã	<0.05	<0.05	<0.05	<0.05	[NA]
Lead	μg	<0.5	0.7	<0.5	1	[NA]
Mercury	μg	<10	<10	<10	<10	<1
Beryllium	μg	<0.5	<0.5	<0.5	<0.5	[NA]
Chromium	μg	1	2	<0.5	1	[NA]
Cobalt	μg	<0.5	<0.5	<0.5	<0.5	[NA]
Manganese	þg	<3	<3	<3	<3	[NA]
Nickel	þg	0.7	3	<0.5	3	[NA]
Selenium	þg	<0.5	<0.5	<0.5	<0.5	[NA]
Vanadium	µg	<0.5	<0.5	<0.5	<0.5	[NA]
Tin	μg	4	5	<0.5	<0.5	[NA]
Date prepared	-	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023
Date analysed	-	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023
Antimony-Dissolved	μg/L	<1	<1	<1	<1	[NA]
Arsenic-Dissolved	μg/L	<1	<1	<1	<1	[NA]
Cadmium-Dissolved	μg/L	0.1	0.1	0.2	0.2	[NA]
Lead-Dissolved	μg/L	2	3	<1	4	[NA]
Mercury-Dissolved	μg/L	<1	<1	<1	<1	<0.1
Beryllium-Dissolved	μg/L	<0.5	<0.5	<0.5	<0.5	[NA]
Chromium-Dissolved	μg/L	7	9	<1	5	[NA]
Cobalt-Dissolved	μg/L	<1	<1	<1	<1	[NA]
Manganese-Dissolved	μg/L	<5	8	<5	6	[NA]
Nickel-Dissolved	μg/L	3	11	<1	13	[NA]
Selenium-Dissolved	μg/L	<1	<1	<1	<1	[NA]
Vanadium-Dissolved	μg/L	<1	<1	<1	<1	[NA]
Tin-Dissolved	μg/L	21	19	<1	1	[NA]

Metals in water - mass units				
Our Reference		334654-8	334654-9	334654-10
Your Reference	UNITS	N19972	N19973	N19974
Type of sample		Water	Water	Water
Volume	mL	421	217	215
Mercury	μg	<1	<0.5	<0.5
Date prepared	-	11/10/2023	11/10/2023	11/10/2023
Date analysed	-	11/10/2023	11/10/2023	11/10/2023
Mercury-Dissolved	μg/L	0.4	<0.05	<0.05

Method ID	Methodology Summary
Metals-020/021/022	Determination of various metals on filters by ICP-AES/MS and or CV/AAS. Note - air volume measurements are not covered by Envirolab's NATA accreditation.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
	Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
	Salt forms (e.g. FeO, PbO, ZnO) are determinined stoichiometrically from the base metal concentration.

Envirolab Reference: 334654 Page | 5 of 10

QUALITY CONTROL: Metals on filters					Duplicate				Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]		
Date prepared	-			12/10/2023	[NT]		[NT]	[NT]	12/10/2023			
Date analysed	-			12/10/2023	[NT]		[NT]	[NT]	12/10/2023			
Antimony	μg/filter	5	Metals-020/021/022	<5	[NT]		[NT]	[NT]	98			
Arsenic	μg/filter	2	Metals-020/021/022	<2	[NT]		[NT]	[NT]	97			
Cadmium	μg/filter	0.5	Metals-020/021/022	<0.5	[NT]		[NT]	[NT]	98			
Lead	μg/filter	1	Metals-020/021/022	<1	[NT]		[NT]	[NT]	104			
Mercury	μg/filter	0.2	Metals-020/021/022	<0.2	[NT]		[NT]	[NT]	95			
Beryllium	μg/filter	0.5	Metals-020/021/022	<0.5	[NT]		[NT]	[NT]	107			
Chromium	μg/filter	0.5	Metals-020/021/022	<0.5	[NT]		[NT]	[NT]	95			
Cobalt	μg/filter	0.5	Metals-020/021/022	<0.5	[NT]		[NT]	[NT]	101			
Manganese	μg/filter	0.5	Metals-020/021/022	<0.5	[NT]		[NT]	[NT]	98			
Nickel	μg/filter	1	Metals-020/021/022	<1	[NT]		[NT]	[NT]	97			
Selenium	μg/filter	5	Metals-020/021/022	<5	[NT]		[NT]	[NT]	95			
Vanadium	μg/filter	1	Metals-020/021/022	<1	[NT]		[NT]	[NT]	97			
Tin	μg/filter	2	Metals-020/021/022	<2	[NT]		[NT]	[NT]	103			

QUALITY CONTROL: Metals in water			r - mass units		Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W5	334654-6
Antimony	μg	0.5	Metals-022	<0.5	4	<0.5	[NT]		[NT]	[NT]
Arsenic	μд	0.5	Metals-022	<0.5	4	<0.5	[NT]		[NT]	[NT]
Cadmium	μg	0.05	Metals-022	<0.05	4	<0.05	[NT]		[NT]	[NT]
Lead	μд	0.5	Metals-022	<0.5	4	0.7	[NT]		[NT]	[NT]
Mercury	μg	0.5	Metals-021	<0.5	4	<10	<10	0	[NT]	[NT]
Beryllium	μg	0.5	Metals-022	<0.5	4	<0.5	[NT]		[NT]	[NT]
Chromium	μg	0.5	Metals-022	<0.5	4	2	[NT]		[NT]	[NT]
Cobalt	μg	0.5	Metals-022	<0.5	4	<0.5	[NT]		[NT]	[NT]
Manganese	μg	3	Metals-022	<3	4	<3	[NT]		[NT]	[NT]
Nickel	μg	0.5	Metals-022	<0.5	4	3	[NT]		[NT]	[NT]
Selenium	μg	0.5	Metals-022	<0.5	4	<0.5	[NT]		[NT]	[NT]
Vanadium	μg	0.5	Metals-022	<0.5	4	<0.5	[NT]		[NT]	[NT]
Tin	μg	0.5	Metals-022	<0.5	4	5	[NT]		[NT]	[NT]
Date prepared	-			11/10/2023	4	11/10/2023	11/10/2023		11/10/2023	11/10/2023
Date analysed	-			11/10/2023	4	11/10/2023	11/10/2023		11/10/2023	11/10/2023
Antimony-Dissolved	μg/L	1	Metals-022	<1	4	<1	[NT]		91	[NT]
Arsenic-Dissolved	μg/L	1	Metals-022	<1	4	<1	[NT]		96	[NT]
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	4	0.1	[NT]		101	[NT]
Lead-Dissolved	μg/L	1	Metals-022	<1	4	3	[NT]		100	[NT]
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	4	<1	<1	0	90	97
Beryllium-Dissolved	μg/L	0.5	Metals-022	<0.5	4	<0.5	[NT]		105	[NT]
Chromium-Dissolved	μg/L	1	Metals-022	<1	4	9	[NT]		110	[NT]
Cobalt-Dissolved	μg/L	1	Metals-022	<1	4	<1	[NT]		110	[NT]
Manganese-Dissolved	μg/L	5	Metals-022	<5	4	8	[NT]		112	[NT]
Nickel-Dissolved	μg/L	1	Metals-022	<1	4	11	[NT]		105	[NT]
Selenium-Dissolved	μg/L	1	Metals-022	<1	4	<1	[NT]		94	[NT]
Vanadium-Dissolved	μg/L	1	Metals-022	<1	4	<1	[NT]		105	[NT]
Tin-Dissolved	μg/L	1	Metals-022	<1	4	19	[NT]		105	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 334654

Revision No: R00

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 334654 Page | 9 of 10

Revision No: R00

Report Comments

Metals in water - mass units - The PQL for Hg has been raised due to the sample matrix requiring dilution.

Envirolab Reference: 334654

Revision No: R00

Page | 10 of 10

CERTIFICATE OF ANALYSIS # DAU23 26	4
---	---

Client Ektimo Pty. Ltd. Job No. EKTI01/231009

6/78 Reserve Road

Artarmon NSW 2064 Sampled by Client

Contact Graham Edwards Date Sampled Not provided 9-Oct-23

The results relate only to the sample(s) as received and tested. Sampling date(s) were not provided by the client. Holding time requirements could not be determined.

Method AUTL_MET_002 Date Reported 13-Nov-23

Details

The method is for determination of tetra- through octa-chlorinated dibenzo-p-dioxins (PCDDs) & dibenzofurans (PCDFs) in emission samples by high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS). This method provides data on all toxic 2,3,7,8-PCDD (seven) and PCDF (ten) isomers. PCDD and PCDF totals for each homologue group (tetra to octa) are also reported. The dioxin toxicity equivalent (I-TEQ) in each sample is calculated using International toxic equivalency factors (I-TEFs).

After sampling the filter & resin are spiked with a range of isotopically labelled surrogate standards and exhaustively extracted. Clean up is effected by partitioning with sulphuric acid then distilled water. Further purification is performed using column chromatography on acid and base modified silica gels, basic alumina and carbon dispersed on celite.

Immediately prior to injection, internal standards are added to each extract, and an aliquot of the extract is injected into the GC. The analytes are separated by the GC and detected by a high-resolution (>10,000) mass spectrometer.

Authorisation

Nino Piro

Senior Chemist

Australian Ultra Trace Laboratory

Robert Crough

Monno

Chemist

Australian Ultra Trace Laboratory

Accreditation

NATA Accreditation Number: 198

NATA
WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing.

This report shall not be reproduced, except in full. Measurement uncertainty is available upon request.

Sample Details : Job No. EKTI01/231009						
Laboratory Reg. No.	Client Sample Ref.	Matrix Description				
N23/020710X	N 19985-19987	Emission	Resin AUT231003A, Filter, Solvent Rinses			

Project Details

Project Name Not specified

Project Number R014868 / PO W012286

Key				
Analytes				
TCDD	Tetrachlorodibenzo-p-dioxin	TCDF	Tetrachlorodibenzofuran	
PeCDD	Pentachlorodibenzo-p-dioxin	PeCDF	Pentachlorodibenzofuran	
HxCDD	Hexachlorodibenzo-p-dioxin	HxCDF	Hexachlorodibenzofuran	
HpCDD	Heptachlorodibenzo-p-dioxin	HpCDF	Heptachlorodibenzofuran	
OCDD	Octachlorodibenzo-p-dioxin	OCDF	Octachlorodibenzofuran	
Units & Abbreviations				

.

pg picograms

< level less than limit of detection (LOD)
I-TEF[‡] International toxic equivalency factor

I-TEQ[‡] International toxic equivalents - dioxins & furans

TEQs are calculated by multiplying the quantified level for each individual dioxin and furan congener reported by the corresponding TEF value and summing the result:

$$I - TEQ = \sum_{i=1}^{7} [PCDD_i \times TEF_i] + \sum_{i=1}^{10} [PCDF_j \times TEF_j]$$

$$i = PCDD \text{ congener index (1 - 7)}$$

$$j = PCDF \text{ congener index (1 - 10)}$$

Lower Bound TEQ defines all congener values reported below the LOD as equal to zero.

Middle Bound TEQ defines all congener values reported below the LOD as equal to half the LOD. Upper Bound TEQ defines all congener values reported below the LOD as equal to the LOD.

Surrogate Recovery $\,$ percentage recovery for $^{13}\mathrm{C}_{12}$ labelled surrogate standard

Laboratory surrogate recovery outside normal acceptance criteria:

40-130% for Tetra/Penta/Hexa congeners - **25-130%** for Hepta/Octa congeners

Field surrogate recovery outside normal acceptance criteria (70-130%)

[‡] as defined in USEPA publication **EPA/625/3-89/016** (1989) USEPA US Environmental Protection Agency

Results: Job No. EKTI01/231009

Laboratory Reg. No. N23/020710X Date Extracted 19-Oct-23

Client Sample Ref.N 19985-19987DB5 Analysis 30-Oct-23MatrixEmissionDB-Dioxin Analysis 06-Nov-23

Description Resin AUT231003A, Filter, Solvent Rinses

PCDD/F Congeners	Level pg	I-TEF	I-TEQ contribution	Labelled Surrogate recovery
2,3,7,8-TCDF	12	0.1	1.2	55
2,3,7,8-TCDD	<4	1	2	47
1,2,3,7,8-PeCDF	5.7	0.05	0.29	76
2,3,4,7,8-PeCDF	8.3	0.5	4.2	123
1,2,3,7,8-PeCDD	<5	0.5	1.3	80
1,2,3,4,7,8-HxCDF	3.8	0.1	0.38	110 73 99 75
1,2,3,6,7,8-HxCDF	4.0	0.1	0.40	
2,3,4,6,7,8-HxCDF	3.4	0.1	0.34	
1,2,3,7,8,9-HxCDF	<1	0.1	0.05	
1,2,3,4,7,8-HxCDD	<3	0.1	0.15	
1,2,3,6,7,8-HxCDD	<2	0.1	0.1	
1,2,3,7,8,9-HxCDD	<3	0.1	0.15	
1,2,3,4,6,7,8-HpCDF	<6	0.01	0.03	90
1,2,3,4,7,8,9-HpCDF	<7	0.01	0.035	80
1,2,3,4,6,7,8-HpCDD	8.2	0.01	0.082	83
OCDF	<5	0.001	0.0025	62
OCDD	45	0.001	0.045	

	Level
PCDD/F Homologue Groups	pg
Total TCDF isomers Total TCDD isomers	460 89
Total PeCDF isomers Total PeCDD isomers	110 39
Total HxCDF isomers Total HxCDD isomers	32 31
Total HpCDF isomers Total HpCDD isomers	<20 19

Summary Results						
Sum of PCDD and PCDF congeners						
Excluding LOD values	830	pg				
I-TEQ						
Lower Bound [excluding LOD values]	6.9	pg				
Middle Bound [including half LOD values]	11	pg				
Upper Bound [including LOD values]	14	pg				

Ektimo

ektimo.com.au 1300 364 005

MELBOURNE (Head Office)

26 Redland Drive Mitcham VIC 3132 AUSTRALIA

SYDNEY

6/78 Reserve Road Artarmon NSW 2064 AUSTRALIA

WOLLONGONG

1/251 Princes Highway Unanderra NSW 2526 AUSTRALIA

PERTH

52 Cooper Road Cockburn Central WA 6164 AUSTRALIA

BRISBANE

3/109 Riverside Place Morningside QLD 4170 AUSTRALIA