# Ektimo

VIP Drum Reconditioners, Seven Hills Emission Testing Report Report Number R012983

ektimo.com.au

#### **Document Information**

Template Version 300522

| Client Name:        | VIP Drum Reconditioners                 |
|---------------------|-----------------------------------------|
| Report Number:      | R012983                                 |
| Date of Issue:      | 26 July 2022                            |
| Attention:          | Grant McNally                           |
| Address:            | 30-32 Powers Rd<br>Seven Hills NSW 2147 |
| Testing Laboratory: | Ektimo Pty Ltd, ABN 86 600 381 413      |

#### **Report Authorisation**



Graham Edwards Senior Air Monitoring Consultant NATA Accredited Laboratory No. 14601

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration, and inspection reports.

This document is confidential and is prepared for the exclusive use of VIP Drum Reconditioners and those granted permission by VIP Drum Reconditioners.

The report shall not be reproduced except in full.

Please note that only numerical results pertaining to measurements conducted directly by Ektimo are covered by Ektimo's terms of NATA accreditation as described in the Test Methods table. This does not include calculations that use data supplied by third-parties, comments, conclusions, or recommendations based upon the results. Refer to 'Test Methods' for full details of testing covered by NATA accreditation.







## **Table of Contents**

| 1 | I   | Executive Summary                              | 4   |
|---|-----|------------------------------------------------|-----|
|   | 1.1 | Background                                     | .4  |
|   | 1.2 | Project Objective                              |     |
|   | 1.3 | Licence Comparison                             | . 5 |
| 2 | I   | Results                                        | 6   |
|   | 2.1 | EPA 1 – Afterburner Discharge Stack            | . 6 |
|   | 2.2 | EPA 2 – Cooling Air Vent                       | 12  |
| 3 | -   | Test Methods 1                                 | 13  |
| 4 | ĺ   | Deviations to Test Methods 1                   | 14  |
| 5 | I   | Plant Operating Conditions                     | 14  |
| 6 | (   | Quality Assurance/Quality Control Information1 | 14  |
| 7 | ĺ   | Definitions 1                                  | 15  |
| 8 | /   | Appendix 1: Site Photos                        | 16  |



#### **1** Executive Summary

#### 1.1 Background

Ektimo was engaged by VIP Drum Reconditioners to perform emission testing at their Seven Hills plant. Testing was carried out in accordance with Environmental Protection Licence 124.

# 1.2 Project Objective

The objective of the project was to conduct a monitoring programme to quantify emissions from the afterburner discharge stack and characteristics of the ingress flow at the cooling air vent as required by VIP Drum Reconditioners' licence.

Monitoring was performed as follows:

| Location                               | Test Date   | Test Parameters*                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EPA 1 – Afterburner<br>Discharge Stack | 7 June 2022 | Solid particles<br>Carbon dioxide, oxygen, carbon monoxide, nitrogen oxides<br>Sulfuric acid mist & sulfur trioxide (as SO <sub>3</sub> )<br>Total fluoride, hydrochloric acid (HCl), chlorine<br>Volatile organic compounds (VOCs)<br>Metals (type 1 substances Sb, As, Cd, Pb, Hg)<br>Dioxins and furans<br>Dry gas density, molecular weight<br>Hydrogen sulfide |
| EPA 2 – Cooling Air Vent               |             | Dry gas density, molecular weight                                                                                                                                                                                                                                                                                                                                   |

\* Flow rate, velocity, temperature, and moisture were also determined.

All results are reported on a dry basis at STP.

Plant operating conditions have been noted in the report.

Hydrogen sulfide was sampled by two separate methods (USEPA Method 11 and Ektimo 255). Both test methods were performed simultaneously to reduce the potential of detection limit issues during reporting. Further information has been supplied in section 4 – *Deviations to test methods*.

The cooling air vent (EPA 2) consists of an open slot around the entire 4555mm circumference of the waste air duct stemming from the afterburner. The width of this slot is variable. Fresh ambient air is drawn through the slot under venturi. On the day of sampling the slot was open to a width of 220mm. Velocity measurements were taken with a pitot probe at three accessible locations around the circumference. All calculations assume that the cooling air vent flow into the afterburner waste air duct is consistent and uniform across the entire width and circumference of the slot.





# 1.3 Licence Comparison

The following licence comparison table shows that all analytes highlighted in green are within the licence limit set by the NSW EPA as per licence 124 (last amended on 7 July 2020).

| ЕРА                                | Parameter                                           | Units             | Licence<br>limit | Detected<br>values at<br>STP<br>7-Jun-22 | Detected<br>values<br>Corrected to<br>11% O <sub>2</sub><br>7-Jun-22 | Detected<br>values<br>Corrected to<br>3% O <sub>2</sub><br>7-Jun-22 | Detected<br>values<br>Corrected to<br>12% CO <sub>2</sub><br>7-Jun-22 |
|------------------------------------|-----------------------------------------------------|-------------------|------------------|------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|
|                                    | Dioxins and furans                                  | ng/m <sup>3</sup> | 0.1              | 0.0022                                   | 0.023                                                                | -                                                                   | -                                                                     |
|                                    | Hydrogen sulfide (USEPA Method 11)                  | mg/m³             | 5                | <0.3                                     | -                                                                    | <5                                                                  | -                                                                     |
|                                    | Hydrogen sulfide (Method Ektimo 255)                | mg/m³             | 5                | <0.006                                   | -                                                                    | <0.1                                                                | -                                                                     |
|                                    | Volatile organic compounds                          | mg/m <sup>3</sup> | 40               | <0.2                                     | -                                                                    | <3                                                                  | -                                                                     |
|                                    | Nitrogen oxides                                     | mg/m <sup>3</sup> | 2000             | 9.3                                      | -                                                                    | 180                                                                 | -                                                                     |
| 1 After house a                    | Mercury                                             | mg/m <sup>3</sup> | 3                | <0.0006                                  | -                                                                    | <0.01                                                               | -                                                                     |
| 1 - Afterburner<br>Discharge Stack | Chlorine                                            | mg/m <sup>3</sup> | 200              | <0.02                                    | -                                                                    | <0.4                                                                | -                                                                     |
| Discharge Stack                    | Cadmium                                             | mg/m <sup>3</sup> | 3                | <0.0007                                  | -                                                                    | <0.01                                                               | -                                                                     |
|                                    | Hydrochloric acid (HCl)                             | mg/m³             | 400              | 0.24                                     | -                                                                    | 4.7                                                                 | -                                                                     |
|                                    | Total fluoride (as HF)                              | mg/m <sup>3</sup> | 50               | <0.04                                    | -                                                                    | <0.7                                                                | -                                                                     |
|                                    | Solid particles                                     | mg/m³             | 250              | 5.4                                      | -                                                                    | -                                                                   | 52                                                                    |
|                                    | Sulfuric acid mist and sulfur trioxide (as $SO_3$ ) | mg/m³             | 100              | 0.9                                      | -                                                                    | 17                                                                  | -                                                                     |
|                                    | Type 1 substances                                   | mg/m <sup>3</sup> | 10               | ≤0.021                                   | -                                                                    | ≤0.41                                                               | -                                                                     |

*Please note that the measurement uncertainty associated with the test results was not considered when determining whether the results were compliant or non-compliant.* 

*Refer to the Test Methods table for the measurement uncertainties.* 



Page: 5 of 17

## 2 Results

# 2.1 EPA 1 – Afterburner Discharge Stack

| Date                    | 7/06/2022                         |                           | Client                             | VIP Drum R        | econditioners           |        |
|-------------------------|-----------------------------------|---------------------------|------------------------------------|-------------------|-------------------------|--------|
| Report                  | R012983                           |                           | Stack ID                           | EPA 1 - Afte      | rburner Discharge Stack |        |
| Licence No.             | 124                               |                           | Location                           | Seven Hills       | 5                       |        |
| Ektimo Staff            | Graham Edwards, Is                | h Alam, Ahmad Ramiz       | State                              | NSW               |                         |        |
| Process Conditions      | Please refer to clien             | t records.                |                                    |                   |                         | 220530 |
| Sampling Plane Detai    | ls                                |                           |                                    |                   |                         |        |
| Sampling plane dime     | ensions                           | 103                       | 35 mm                              |                   |                         |        |
| Sampling plane area     |                                   | 0.8                       | 341 m²                             |                   |                         |        |
| Sampling port size, n   | umber & depth                     | 4" BSP (                  | x2), 80 mm                         |                   |                         |        |
| Access & height of po   | orts                              | Step ladde                | r 8 m                              |                   |                         |        |
| Duct orientation & sl   | nape                              | Vertica                   | l Circular                         |                   |                         |        |
| Downstream disturba     | ance                              | Exi                       | t 7 D                              |                   |                         |        |
| Upstream disturbanc     | e                                 | Change in diamete         | r 3 D                              |                   |                         |        |
| No. traverses & point   | s sampled                         |                           | 2 16                               |                   |                         |        |
| Sample plane confor     | mance to AS4323.1 (2021)          | Conforming                | but non-ideal                      |                   |                         |        |
| The compling plane is a | leemed to be non-ideal due        | to the following reasons: |                                    |                   |                         |        |
|                         |                                   | -                         |                                    | agual ta 2D       |                         |        |
| The sampling plane i    | s too near to the upstre          | am disturbance but is gi  | reater than or                     | equal to 2D       |                         |        |
| Stack Parameters        |                                   |                           |                                    |                   |                         |        |
| Moisture content, %v    | /v                                | 1.1                       |                                    |                   |                         |        |
| Gas molecular weigh     | t, g/g mole                       | 28.9 (wet)                |                                    |                   | 29.0 (dry)              |        |
| Gas density at STP, kg  | g/m³                              | 1.29 (wet)                |                                    |                   | 1.30 (dry)              |        |
| Gas density at discha   | rge conditions, kg/m <sup>3</sup> | 0.83                      |                                    |                   |                         |        |
| % Oxygen correction &   | & Factor                          | 3 %                       |                                    |                   | 19.33                   |        |
| Gas Flow Parameters     | i                                 |                           |                                    |                   |                         |        |
| Flow measurement ti     | me(s) (hhmm)                      | 0820 & 1130               | D                                  |                   |                         |        |
| Temperature, °C         |                                   | 147                       |                                    |                   |                         |        |
| Temperature, K          |                                   | 420                       |                                    |                   |                         |        |
| Velocity at sampling    | plane, m/s                        | 34                        |                                    |                   |                         |        |
| Volumetric flow rate,   |                                   | 29                        |                                    |                   |                         |        |
| Volumetric flow rate    |                                   | 19                        |                                    |                   |                         |        |
| Volumetric flow rate    |                                   | 19                        |                                    |                   |                         |        |
| Mass flow rate (wet b   |                                   | 87000                     |                                    |                   |                         |        |
| · ·                     | · -                               |                           |                                    |                   |                         |        |
| Isokinetic Results      |                                   |                           |                                    | Results           |                         |        |
|                         | Samplingtime                      |                           |                                    | 0925-1050         |                         |        |
|                         |                                   |                           |                                    | Corrected         |                         |        |
|                         |                                   |                           | Concentration<br>mg/m <sup>3</sup> | to 3% O2<br>mg/m³ | Mass Rate<br>g/min      |        |
| Antimony                |                                   |                           | <0.006                             | <0.1              | <0.007                  |        |
| Arsenic                 |                                   |                           | <0.000                             | <0.1              | <0.007                  |        |
| Cadmium                 |                                   |                           | < 0.003                            | < 0.05            | <0.003                  |        |
| Lead                    |                                   |                           | 0.011                              | 0.21              | 0.012                   |        |
| LCUU                    |                                   |                           | 0.011                              | 0.21              | 0.012                   |        |

 Mercury
 <0.0006</th>
 <0.01</th>
 <0.0007</th>

 Total Type 1 Substances
 ≤0.021
 ≤0.41
 ≤0.023

 Isokinetic Sampling Parameters
 80
 108





| Date                | 7/06/2022                            |                                 | Client            | VIP Drum Reconditione    | rs          |
|---------------------|--------------------------------------|---------------------------------|-------------------|--------------------------|-------------|
| Report              | R012983                              |                                 | Stack ID          | EPA 1 - Afterburner Disc | harge Stack |
| Licence No.         | 124                                  |                                 | Location          | Seven Hills              |             |
| Ektimo Staff        | Graham Edwards, Is                   | h Alam, Ahmad Ramiz             | State             | NSW                      |             |
| Process Conditions  | Please refer to clier                | t records.                      |                   |                          | 22053       |
|                     |                                      |                                 |                   |                          |             |
| Sampling Plane Det  |                                      |                                 |                   |                          |             |
| Sampling plane dir  |                                      |                                 | 1035 mm           |                          |             |
| Sampling plane are  |                                      |                                 | 0.841 m²          |                          |             |
| Sampling port size, |                                      |                                 | SP (x2), 80 mm    |                          |             |
| Access & height of  |                                      |                                 | adder 8 m         |                          |             |
| Duct orientation &  | •                                    | Ve                              | ertical Circular  |                          |             |
| Downstream distur   |                                      |                                 | Exit 7 D          |                          |             |
| Upstream disturba   |                                      | Change in dia                   |                   |                          |             |
| No. traverses & poi | •                                    |                                 | 2 16              |                          |             |
| Sample plane conf   | ormance to AS4323.1 (2021            | Conform                         | ning but non-ide  | al                       |             |
|                     |                                      |                                 |                   |                          |             |
|                     | is deemed to be non-ideal due        | -                               |                   |                          |             |
| The sampling plan   | e is too near to the upstre          | am disturbance but is greater t | nan or equal to 2 | D                        |             |
| Stack Parameters    |                                      |                                 |                   |                          |             |
| Moisture content, 9 | %v/v                                 | 1                               |                   |                          |             |
| Gas molecular wei   |                                      | 28.9 (                          |                   | 29.0 (dry)               |             |
| Gas density at STP, |                                      | 1.29 (                          |                   | 1.30 (dry)               |             |
|                     | charge conditions, kg/m <sup>3</sup> | 3.0                             |                   |                          |             |
| % Oxygen correction |                                      | 3 9                             |                   | 19.15                    |             |
|                     |                                      |                                 | -                 |                          |             |
| Gas Flow Paramete   | ers                                  |                                 |                   |                          |             |
| Flow measurement    | t time(s) (hhmm)                     | 1130 8                          | 1345              |                          |             |
| Temperature, °C     |                                      | 14                              | 7                 |                          |             |
| Temperature, K      |                                      | 42                              | 0                 |                          |             |
| Velocity at samplin | ng plane, m/s                        | 34                              | 1                 |                          |             |
| Volumetric flow rat | te, actual, m³/s                     | 28                              | 3                 |                          |             |
| Volumetric flow rat | te (wet STP), m³/s                   | 18                              | 3                 |                          |             |
| Volumetric flow rat |                                      | 18                              | 3                 |                          |             |
| Mass flow rate (we  |                                      | 850                             | 00                |                          |             |
|                     | <i></i>                              |                                 |                   |                          |             |
| Gas Analyser Result | ts                                   | Average                         |                   | Minimum                  | Maximum     |
| •                   | Samplingtime                         | 1211 - 1330                     |                   | 1211 - 1330              | 1211-1330   |
| 1                   | . 0                                  | Corrected                       |                   | Corrected                | Corrected   |

| Gas Analyser Results                  |                                    | Average                       |                    | r i                                | viinimum                      |                    | IN IN                              | laximum                       |                    |
|---------------------------------------|------------------------------------|-------------------------------|--------------------|------------------------------------|-------------------------------|--------------------|------------------------------------|-------------------------------|--------------------|
| Sampling time                         |                                    | 1211 - 1330                   |                    | 1                                  | 211 - 1330                    |                    | 1                                  | 211-1330                      |                    |
|                                       |                                    | Corrected                     |                    |                                    | Corrected                     |                    |                                    | Corrected                     |                    |
| Combustion Gases                      | Concentration<br>mg/m <sup>3</sup> | to 3% O2<br>mg/m <sup>3</sup> | Mass Rate<br>g/min | Concentration<br>mg/m <sup>3</sup> | to 3% O2<br>mg/m <sup>3</sup> | Mass Rate<br>g/min | Concentration<br>mg/m <sup>3</sup> | to 3% O2<br>mg/m <sup>3</sup> | Mass Rate<br>g/min |
| Nitrogen oxides (as NO <sub>2</sub> ) | 9.3                                | 180                           | 10                 | 8.2                                | 160                           | 8.9                | 13                                 | 240                           | 14                 |
| Carbon monoxide                       | <3                                 | <50                           | <3                 | <3                                 | <50                           | <3                 | <3                                 | <50                           | <3                 |
|                                       | < 5                                | <50                           | <5                 | < 5                                | <50                           | < 5                | < 5                                | <50                           | < <u>&gt;</u>      |
|                                       |                                    | Corrected                     |                    |                                    | Corrected                     |                    |                                    | Corrected                     |                    |
|                                       | Concentration                      | to 3% O2                      | Mass Rate          | Concentration                      |                               |                    | Concentration                      | to 3% O2                      | Mass Rate          |
|                                       | ppm                                | ppm                           | g/min              | ppm                                | ppm                           | g/min              | ppm                                | ppm                           | g/min              |
| Carbon monoxide                       | <2                                 | <40                           | <3                 | <2                                 | <40                           | <3                 | <2                                 | <40                           | <3                 |
|                                       | c                                  | oncentration                  |                    | Concentration                      |                               |                    | Concentration                      |                               |                    |
|                                       |                                    | %v/v                          |                    |                                    | %v/v                          |                    |                                    | %v/v                          |                    |
| Carbon dioxide                        |                                    | 0.8                           |                    |                                    | 0.7                           |                    |                                    | 0.9                           |                    |
| Oxygen                                |                                    | 20                            |                    |                                    | 19.8                          |                    |                                    | 20.1                          |                    |

| Isokinetic Results                            | Results                           |
|-----------------------------------------------|-----------------------------------|
| Samplingtime                                  | 1205-1330                         |
|                                               | Corrected                         |
|                                               | Concentration to 12% O2 Mass Rate |
|                                               | mg/m³ mg/m³ g/min                 |
| Solid Particles                               | 5.4 52 5.9                        |
|                                               | Corrected                         |
|                                               | Concentration to 3% O2 Mass Rate  |
| Sulfur trioxide and/or Sulfuric acid (as SO3) | 0.9 17 0.98                       |
| Isokinetic Sampling Parameters                |                                   |
| Sampling time, min                            | 80                                |
| Isokinetic rate, %                            | 101                               |
| Gravimetric analysis date (total particulate) | 06-10-2022                        |





| Date<br>Report<br>Licence No.<br>Ektimo Staff<br>Process Conditions | 7/06/2022<br>R012983<br>124<br>Graham Edwards, Ish Al<br>Please refer to client rec | Stack ID<br>Location               |                                | Reconditioners<br>erburner Discharge Stack<br>s | 220530 |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------|--------------------------------|-------------------------------------------------|--------|
| Total VOCs (as n-Prop                                               | ane)                                                                                |                                    | Results                        |                                                 |        |
|                                                                     |                                                                                     | Concentration<br>mg/m <sup>3</sup> | Corrected<br>to 3% O2<br>mg/m³ | Mass Rate<br>g/min                              |        |
| Total                                                               |                                                                                     | <0.2                               | <3                             | <0.2                                            |        |
| VOC (speciated)                                                     | Samplingtime                                                                        |                                    | Results<br>1230-1332           |                                                 |        |
|                                                                     | Samping time                                                                        | Concentration<br>mg/m <sup>3</sup> | Corrected                      | Mass Rate<br>g/min                              |        |
| Detection limit <sup>(1)</sup>                                      |                                                                                     | <0.2                               | <3                             | <0.2                                            |        |

(1) Unless otherwise reported, the following target compounds were found to be below detection:

(1) Unless otherwise reported, the following target compounds were found to be below detection: Dichloromethane, Ethanol, Isopropanol, 1,1-Dichloroethane, trans-12-Dichloroethane, cis-12-Dichloroethane, 12-Dichloroethane, 12-Dichloroethane, Benzene, Carbon tetrachloride, Butanol, 1Methoxy-2-propanol, Trichloroethylene, Toluene, 1(12-Trichloroethane, Tetrachloroethene, Chloroform, 1(11-Trichloroethane, 12-Dichloroethane, Benzene, Carbon tetrachloride, Butanol, 1Methoxy-2-propanol, Trichloroethylene, Toluene, 1(12-Trichloroethane, Tetrachloroethene, Chloroforme, 12,3-Trimethylbenzene, ac+ o-Xylene, Styrene, o-Xylene, 2-Butoxyethanol, 11(2,2-Tetrachloroethane, Isopropylbenzene, Propylbenzene, 13,5-Trimethylbenzene, tetr-Butylbenzene, 12,4-Trimethylbenzene, 12,3-Trimethylbenzene, Acetone, Pentane, Acrylonitrile, Methyl ethyl ketone, n-Hexane, Ethyl acetate, Cyclohexane, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 3-Methylhexane, Heptane, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, 2-Hexanone, Octane, Butyl acetate, 1-Methoxy-2-propyl acetate, Butyl acrylate, Nonane, Cellosolve acetate, alpha-Pinene, beta-Pinene, Decane, 3-Carene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane Dodecane, Tridecane, Tetradecane





| Date                    | 7/06/2022                          |                           | Client                             | VIP Drum R   | leconditioners           |        |
|-------------------------|------------------------------------|---------------------------|------------------------------------|--------------|--------------------------|--------|
| Report                  | R012983                            |                           | Stack ID                           | EPA 1 - Afte | erburner Discharge Stack |        |
| Licence No.             | 124                                |                           | Location                           | Seven Hills  | 5                        |        |
| Ektimo Staff            | Graham Edwards, Is                 | sh Alam, Ahmad Ramiz      | State                              | NSW          |                          |        |
| Process Conditions      | Please refer to clie               | nt records.               |                                    |              |                          | 220530 |
| Sampling Plane Detai    | ils                                |                           |                                    |              |                          |        |
| Sampling plane dime     |                                    | 103                       | 85 mm                              |              |                          |        |
| Sampling plane area     |                                    | 0.8                       | 41 m²                              |              |                          |        |
| Sampling port size, n   | umber & depth                      | 4" BSP (                  | x2), 80 mm                         |              |                          |        |
| Access & height of po   | orts                               | Step ladde                | r 8 m                              |              |                          |        |
| Duct orientation & s    |                                    | Vertica                   | l Circular                         |              |                          |        |
| Downstream disturba     | ance                               | Exi                       | t 7 D                              |              |                          |        |
| Upstream disturband     | ce                                 | Change in diamete         | r 3 D                              |              |                          |        |
| No. traverses & point   |                                    | -                         | 2 16                               |              |                          |        |
| -                       | mance to AS4323.1 (2021            | .) Conforming             | but non-ideal                      | l            |                          |        |
| The sampling plane is ( | deemed to be non-ideal du          | e to the following reason | ç.                                 |              |                          |        |
|                         | is too near to the upstre          | -                         |                                    | r equal to 2 | D                        |        |
|                         |                                    |                           |                                    |              |                          |        |
| Stack Parameters        | 1                                  |                           |                                    |              |                          |        |
| Moisture content, %v    | •                                  | 1.2                       |                                    |              |                          |        |
| Gas molecular weigh     |                                    | 28.9 (wet)                |                                    |              | 29.0 (dry)               |        |
| Gas density at STP, kg  | -                                  | 1.29 (wet)                |                                    |              | 1.30 (dry)               |        |
| -                       | arge conditions, kg/m <sup>3</sup> | 0.83                      |                                    |              |                          |        |
| % Oxygen correction 8   | & Factor                           | 3 %                       |                                    |              | 19.15                    |        |
| Gas Flow Parameters     | S                                  |                           |                                    |              |                          |        |
| Flow measurement t      | ime(s) (hhmm)                      | 1130 & 1345               | 5                                  |              |                          |        |
| Temperature, °C         |                                    | 147                       |                                    |              |                          |        |
| Temperature, K          |                                    | 420                       |                                    |              |                          |        |
| Velocity at sampling    | plane, m/s                         | 34                        |                                    |              |                          |        |
| Volumetric flow rate,   | , actual, m³/s                     | 28                        |                                    |              |                          |        |
| Volumetric flow rate    | (wet STP), m³/s                    | 18                        |                                    |              |                          |        |
| Volumetric flow rate    | (dry STP), m³/s                    | 18                        |                                    |              |                          |        |
| Mass flow rate (wet l   | basis), kg/hour                    | 85000                     |                                    |              |                          |        |
| Isokinetic Results      |                                    |                           |                                    | Results      |                          |        |
|                         | Samplingtime                       |                           |                                    | 1205-1330    |                          |        |
|                         |                                    |                           |                                    | Corrected    |                          |        |
|                         |                                    |                           | Concentration<br>mg/m <sup>3</sup> |              | Mass Rate<br>g/min       |        |
| Chloride (as HCl)       |                                    |                           | 0.24                               | 4.7          | 0.27                     |        |
| Chlorine                |                                    |                           | <0.02                              | <0.4         | <0.02                    |        |
| Total fluoride (as HF   | )                                  |                           | <0.04                              | <0.7         | <0.04                    |        |
| Isokinetic Sampling Pa  | rameters                           |                           |                                    |              |                          |        |
| Sampling time, min      |                                    |                           |                                    | 80           |                          |        |
| Isokingtic rate %       |                                    |                           |                                    | 103          |                          |        |

103



Isokinetic rate, %



| Date                                                   | 7/06/2022                           |                            | Client      | VIP Drum Reconditioners         |                       |
|--------------------------------------------------------|-------------------------------------|----------------------------|-------------|---------------------------------|-----------------------|
| Report                                                 | R012983                             |                            | Stack ID    | EPA 1 - Afterburner Discharge S | Stack                 |
| Licence No.                                            | 124                                 |                            | Location    | Seven Hills                     |                       |
| Ektimo Staff                                           | Graham Edwards, Ish                 | n Alam, Ahmad Ramiz        | State       | NSW                             |                       |
| Process Conditions                                     | Please refer to client              | records.                   |             |                                 | 22053                 |
| Sampling Plane Det                                     | ails                                |                            |             |                                 |                       |
| Sampling plane dir                                     | mensions                            | 103                        | 35 mm       |                                 |                       |
| Sampling plane are                                     | ea                                  | 0.8                        | 341 m²      |                                 |                       |
| Sampling port size,                                    | number & depth                      | 4" BSP (                   | (x2), 80 mm |                                 |                       |
| Access & height of                                     | ports                               | Step ladde                 | er 8 m      |                                 |                       |
| Duct orientation &                                     | shape                               | Vertica                    | l Circular  |                                 |                       |
| Downstream distur                                      | bance                               | Exi                        | it 7 D      |                                 |                       |
| Upstream disturba                                      | nce                                 | Change in diamete          | er 3 D      |                                 |                       |
| No. traverses & poi                                    | nts sampled                         |                            | 2 16        |                                 |                       |
| Sample plane conf                                      | ormance to AS4323.1 (20             | 21) Conforming             | but non-ide | al                              |                       |
| The sampling plane i                                   | s deemed to be non-ideal            | due to the following reaso | ons:        |                                 |                       |
|                                                        | e is too near to the ups            | •                          |             | in or equal to 2D               |                       |
| Stack Parameters                                       |                                     |                            |             |                                 |                       |
| Moisture content, 9                                    | 6.1.1.1                             | 1                          |             |                                 |                       |
| Gas molecular wei                                      | -                                   | 28.9 (wet)                 |             | 29.0 (dry)                      |                       |
| Gas density at STP,                                    |                                     | 1.29 (wet)                 |             | 1.30 (dry)                      |                       |
|                                                        | harge conditions, kg/m <sup>3</sup> |                            |             | 1.50 (dry)                      |                       |
| % Oxygen correction                                    |                                     | 3 %                        |             | 18.85                           |                       |
| Gas Flow Paramete                                      | arc .                               |                            |             |                                 |                       |
| Flow measurement                                       |                                     | 0820 & 1130                | า           |                                 |                       |
| Temperature, °C                                        |                                     | 147                        | 5           |                                 |                       |
| Temperature, K                                         |                                     | 420                        |             |                                 |                       |
| Velocity at samplin                                    | anlane m/s                          | 34                         |             |                                 |                       |
| Volumetric flow rat                                    |                                     | 29                         |             |                                 |                       |
| Volumetric flow rat                                    |                                     | 19                         |             |                                 |                       |
| Volumetric flow rat                                    |                                     | 19                         |             |                                 |                       |
| Mass flow rate (we                                     |                                     | 87000                      |             |                                 |                       |
|                                                        | ( basis), kg/110ui                  | 87000                      |             |                                 |                       |
| Gas Analyser Resul                                     | ts                                  | Average                    |             | Minimum                         | Maximum               |
|                                                        | Samplingtime                        | 0850 - 1051                |             | 0850-1051                       | 0850-1051             |
|                                                        |                                     | Concentration<br>%v/v      |             | Concentration<br>%v/v           | Concentration<br>%v/v |
|                                                        |                                     | 0.7                        |             | 0.6                             | 0.9                   |
| Carbon dioxide                                         |                                     |                            |             |                                 | 0.0                   |
|                                                        |                                     | 20                         |             | 19.8                            | 20.1                  |
|                                                        |                                     |                            |             | 19.8                            | 20.1                  |
| Carbon dioxide<br>Oxygen<br><b>Hydrogen Sulfide (l</b> | Ektimo 255)                         |                            |             | 19.8<br>Results                 | 20.1                  |

|        | 1110-1210 |                                                    |                                                                    |
|--------|-----------|----------------------------------------------------|--------------------------------------------------------------------|
|        | Corrected |                                                    |                                                                    |
|        |           | Mass Rate                                          |                                                                    |
| mg/m³  | mg/m³     | g/min                                              |                                                                    |
| <0.006 | <0.1      | <0.006                                             |                                                                    |
|        | mg/m³     | Corrected<br>Concentration to 3% O2<br>mg/m³ mg/m³ | Corrected<br>Concentration to 3% O2 Mass Rate<br>mg/m³ mg/m³ g/min |

| Hydrogen Sulfide (Method 11)   | Results                                               |
|--------------------------------|-------------------------------------------------------|
| Sampling time                  | 1110-1210                                             |
|                                | Corrected                                             |
|                                | Concentration to 3% O2 Mass Rate<br>mg/m³ mg/m³ g/min |
| Hydrogen Sulfide               | <0.3 <5 <0.3                                          |
| Isokinetic Sampling Parameters |                                                       |
| Sampling time, min             | 128                                                   |
| Isokinetic rate, %             | 100                                                   |





| Date                                            | 7/06/2022      |                     | Client               | VIP Drum Re   | econditioners |        |  |
|-------------------------------------------------|----------------|---------------------|----------------------|---------------|---------------|--------|--|
| Report                                          | R012983<br>124 |                     | Stack ID<br>Location | EPA 1 - After |               |        |  |
| Licence No.                                     |                |                     |                      | Seven Hills   |               |        |  |
| Ektimo Staff                                    |                | h Alam, Ahmad Ramiz | State                | NSW           |               |        |  |
| Process Conditions Please refer to client recor |                |                     |                      |               |               | 220530 |  |
|                                                 |                |                     |                      |               |               |        |  |
| Dioxins & Furans (PC                            | DDs & PCDFs)   |                     |                      | Results       |               |        |  |
|                                                 | Sampling time  |                     |                      | 0845 - 1055   |               |        |  |
|                                                 |                |                     |                      | Corrected     |               |        |  |
|                                                 |                |                     | Concentration        |               | Mass Rate     |        |  |
|                                                 |                |                     | ng/m³                | ng/m³         | ng/min        |        |  |
| 2,3,7,8-TCDF                                    |                |                     | 0.00032              | 0.0033        | 0.35          |        |  |
| 2,3,7,8-TCDD                                    |                |                     | <0.0006              | <0.006        | <0.6          |        |  |
| 1,2,3,7,8-PeCDF                                 |                |                     | <0.00004             | <0.0004       | <0.04         |        |  |
| 2,3,4,7,8-PeCDF                                 |                |                     | <0.0004              | <0.004        | <0.4          |        |  |
| 1,2,3,7,8-PeCDD                                 |                |                     | < 0.0006             | <0.006        | <0.6          |        |  |
| 1,2,3,4,7,8-HxCDF                               |                |                     | <0.00006             | <0.0006       | <0.06         |        |  |
| 1,2,3,6,7,8-HxCDF                               |                |                     | <0.00006             | <0.0006       | <0.06         |        |  |
| 2,3,4,6,7,8-HxCDF                               |                |                     | <0.00006             | <0.0006       | <0.06         |        |  |
| 1,2,3,7,8,9-HxCDF                               |                |                     | <0.00004             | <0.0004       | <0.05         |        |  |
| 1,2,3,4,7,8-HxCDD                               |                |                     | <0.00004             | <0.0004       | <0.04         |        |  |
| 1,2,3,6,7,8-HxCDD                               |                |                     | <0.00004             | <0.0004       | <0.04         |        |  |
| 1,2,3,7,8,9-HxCDD                               |                |                     | <0.00004             | <0.0004       | <0.04         |        |  |
| 1,2,3,4,6,7,8-HpCDF                             |                |                     | 0.000021             | 0.00022       | 0.023         |        |  |
| 1,2,3,4,7,8,9-HpCDF                             |                |                     | <0.000006            | <0.00006      | <0.006        |        |  |
| 1,2,3,4,6,7,8-HpCDD                             |                |                     | 0.000023             | 0.00024       | 0.026         |        |  |
| OCDF                                            |                |                     | 0.0000091            | 0.0000095     | 0.001         |        |  |
| OCDD                                            |                |                     | 0.000006             | 0.000062      | 0.0066        |        |  |
| Total TCDF isomers                              |                |                     | 0.076                | 0.79          | 84            |        |  |
| Total TCDD isomers                              |                |                     | 0.0055               | 0.057         | 6.1           |        |  |
| Total PeCDF isomers                             |                |                     | 0.022                | 0.23          | 24            |        |  |
| Total PeCDD isomers                             |                |                     | < 0.004              | < 0.04        | <4            |        |  |
| Total HxCDF isomers                             |                |                     | 0.0046               | 0.047         | 5.1           |        |  |
| Total HxCDD isomers                             |                |                     | 0.0022               | 0.023         | 2.5           |        |  |
| Total HpCDF isomers                             |                |                     | 0.0021               | 0.022         | 2.3           |        |  |
| Total HpCDD isomer                              | S              |                     | 0.0053               | 0.055         | 5.8           |        |  |
| Total PCDDs + PCDFs                             |                |                     | 0.14                 | 1.5           | 160           |        |  |
| WHO05-TEQ                                       |                |                     |                      |               |               |        |  |
| Lower Bound                                     |                |                     | 0.00037              | 0.0038        | 0.41          |        |  |
| Middle Bound                                    |                |                     | 0.0013               | 0.014         | 1.5           |        |  |
| Upper Bound                                     |                |                     | 0.0022               | 0.023         | 2.5           |        |  |

#### Abbreviations and definitions

WHO05-TEQ Lower Bound Middle Bound Upper Bound World Health Organisation toxic equivalents for dioxins and furans Defines values reported below detection as equal to zero. Defines values reported below detection are equal to half the detection limit. Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency factor.

| Isokinetic Sampling Parameters | Results |
|--------------------------------|---------|
| Dioxins & Furans               |         |
| Sampling time, min             | 128     |
| Isokinetic rate, %             | 100     |



# 2.2 EPA 2 – Cooling Air Vent

| Date                                                                                                                                                                                                                                          | 7/06/2022                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Client        | VIP Drum Reconditioners  |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------|--------|
| Report                                                                                                                                                                                                                                        | R012983                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stack ID      | EPA 2 - Cooling Air Vent |        |
| Licence No.                                                                                                                                                                                                                                   | 124                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Location      | Seven Hills              |        |
| Ektimo Staff                                                                                                                                                                                                                                  | Graham Edwards, Ish Ala                                                                                                                                                                          | m, Ahmad Ramiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | State         | NSW                      |        |
| Process Conditions                                                                                                                                                                                                                            | Please refer to client rec                                                                                                                                                                       | ords.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                          | 220530 |
|                                                                                                                                                                                                                                               |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                          |        |
| Sampling Plane Deta                                                                                                                                                                                                                           | ails                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                          |        |
| Sampling plane dim                                                                                                                                                                                                                            | ensions                                                                                                                                                                                          | 4555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x 220 mm      |                          |        |
| Sampling plane area                                                                                                                                                                                                                           | a                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 m²          |                          |        |
| Sampling port size,                                                                                                                                                                                                                           | number & depth                                                                                                                                                                                   | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A, 0 mm       |                          |        |
| Access & height of p                                                                                                                                                                                                                          | orts                                                                                                                                                                                             | Stai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rs 3 m        |                          |        |
| Duct orientation & s                                                                                                                                                                                                                          | shape                                                                                                                                                                                            | Horizont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | al Rectangula | ir                       |        |
| Downstream disturb                                                                                                                                                                                                                            | bance                                                                                                                                                                                            | Change in diamet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | er 0 D        |                          |        |
| Upstream disturban                                                                                                                                                                                                                            | ce                                                                                                                                                                                               | Change in diamet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | er 0 D        |                          |        |
| No. traverses & poin                                                                                                                                                                                                                          | its sampled                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 4           |                          |        |
| Sample plane confo                                                                                                                                                                                                                            | rmance to AS4323.1 (2021)                                                                                                                                                                        | Non-c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | onforming     |                          |        |
| The discharge is ass<br><b>The sampling plane is</b><br>The downstream dis                                                                                                                                                                    | ts sampled is less than the re<br>sumed to be composed of dry a<br>deemed to be non-conforming du<br>sturbance is <1D from the sam                                                               | air and moisture<br>ue to the following rea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | isons:        |                          |        |
|                                                                                                                                                                                                                                               | rbance is <2D from the sampli                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                          |        |
|                                                                                                                                                                                                                                               | bance is <2D from the sampli                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                          |        |
| Stack Parameters                                                                                                                                                                                                                              | bance is <2D from the sampli                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                          |        |
|                                                                                                                                                                                                                                               | · · ·                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                          |        |
| Stack Parameters                                                                                                                                                                                                                              | v/v                                                                                                                                                                                              | ng plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 29.0 (dry)               |        |
| Stack Parameters<br>Moisture content, %                                                                                                                                                                                                       | v/v<br>ht, g/g mole                                                                                                                                                                              | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 29.0 (dry)<br>1.29 (dry) |        |
| <b>Stack Parameters</b><br>Moisture content, %<br>Gas molecular weig<br>Gas density at STP, k                                                                                                                                                 | v/v<br>ht, g/g mole                                                                                                                                                                              | <pre></pre> <pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre> <p< td=""><td></td><td></td><td></td></p<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre> |               |                          |        |
| <b>Stack Parameters</b><br>Moisture content, %<br>Gas molecular weig<br>Gas density at STP, k                                                                                                                                                 | v/v<br>ht, g/g mole<br>kg/m³<br>harge conditions, kg/m³                                                                                                                                          | <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                          |        |
| Stack Parameters<br>Moisture content, %<br>Gas molecular weig<br>Gas density at STP, k<br>Gas density at disch                                                                                                                                | v/v<br>ht, g/g mole<br>kg/m <sup>3</sup><br>large conditions, kg/m <sup>3</sup>                                                                                                                  | <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                          |        |
| Stack Parameters<br>Moisture content, %<br>Gas molecular weig<br>Gas density at STP, k<br>Gas density at disch<br>Gas Flow Parameter                                                                                                          | v/v<br>ht, g/g mole<br>kg/m <sup>3</sup><br>large conditions, kg/m <sup>3</sup>                                                                                                                  | <0.4<br>29.0 (wet<br>1.29 (wet<br>1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                          |        |
| Stack Parameters<br>Moisture content, %<br>Gas molecular weig<br>Gas density at STP, k<br>Gas density at disch<br>Gas Flow Parameter<br>Flow measurement                                                                                      | v/v<br>ht, g/g mole<br>kg/m <sup>3</sup><br>large conditions, kg/m <sup>3</sup>                                                                                                                  | <0.4<br>29.0 (wet<br>1.29 (wet<br>1.04<br>1256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                          |        |
| Stack Parameters<br>Moisture content, %<br>Gas molecular weig<br>Gas density at STP, k<br>Gas density at disch<br>Gas Flow Parameter<br>Flow measurement<br>Temperature, °C                                                                   | v/v<br>ht, g/g mole<br>kg/m <sup>3</sup><br>harge conditions, kg/m <sup>3</sup><br>r <b>s</b><br>time(s) (hhmm)                                                                                  | <0.4<br>29.0 (wet<br>1.29 (wet<br>1.04<br>1256<br>63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                          |        |
| Stack Parameters<br>Moisture content, %<br>Gas molecular weig<br>Gas density at STP, k<br>Gas density at disch<br>Gas Flow Parameter<br>Flow measurement<br>Temperature, °C<br>Temperature, K                                                 | v/v<br>ht, g/g mole<br>sg/m <sup>3</sup><br>harge conditions, kg/m <sup>3</sup><br>r <b>s</b><br>time(s) (hhmm)<br>g plane, m/s                                                                  | <0.4<br>29.0 (wet<br>1.29 (wet<br>1.04<br>1256<br>63<br>336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                          |        |
| Stack Parameters<br>Moisture content, %<br>Gas molecular weig<br>Gas density at STP, k<br>Gas density at disch<br>Gas Flow Parameter<br>Flow measurement<br>Temperature, °C<br>Temperature, K<br>Velocity at sampling                         | v/v<br>ht, g/g mole<br>sg/m <sup>3</sup><br>large conditions, kg/m <sup>3</sup><br><b>'S</b><br>time(s) (hhmm)<br>g plane, m/s<br>e, actual, m <sup>3</sup> /s                                   | <ul> <li>&lt;0.4</li> <li>&lt;0.4</li> <li>29.0 (wet</li> <li>1.29 (wet</li> <li>1.04</li> <li>1256</li> <li>63</li> <li>336</li> <li>20</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          |        |
| Stack Parameters<br>Moisture content, %<br>Gas molecular weig<br>Gas density at STP, k<br>Gas density at disch<br>Gas Flow Parameter<br>Flow measurement<br>Temperature, °C<br>Temperature, K<br>Velocity at sampling<br>Volumetric flow rate | v/v<br>ht, g/g mole<br>kg/m <sup>3</sup><br>harge conditions, kg/m <sup>3</sup><br><b>'S</b><br>time(s) (hhmm)<br>g plane, m/s<br>e, actual, m <sup>3</sup> /s<br>e (wet STP), m <sup>3</sup> /s | <0.4<br>29.0 (wet<br>1.29 (wet<br>1.04<br>1256<br>63<br>336<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                          |        |



#### 3 Test Methods

All sampling and analysis performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

|                                                |                                                 |                                                                      |               | NATA accredited |                         |
|------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------|---------------|-----------------|-------------------------|
| Parameter                                      | Sampling method                                 | Analysis method                                                      | Uncertainty*  | Sampling        | Analysis                |
| Sampling points - Selection                    | NSW EPA TM-1<br>(AS 4323.1)                     | NA                                                                   | NA            | $\checkmark$    | NA                      |
| Flow rate, temperature and velocity            | NSW EPA TM-2<br>(USEPA Method 2)                | NSW EPA TM-2<br>(USEPA Method 2)                                     | 8%, 2%, 7%    | NA              | $\checkmark$            |
| Moisture content                               | NSW EPA TM-22<br>(USEPA Method 4)               | NSW EPA TM-22<br>(USEPA Method 4)                                    | 8%            | ✓               | $\checkmark$            |
| Molecular weight                               | NA                                              | NSW EPA TM-23<br>(USEPA Method 3)                                    | not specified | NA              | ~                       |
| Dry gas density                                | NA                                              | NSW EPA TM-23<br>(USEPA Method 3)                                    | not specified | NA              | ~                       |
| Carbon dioxide                                 | NSW EPA TM-24<br>(USEPA Method 3A)              | NSW EPA TM-24<br>(USEPA Method 3A)                                   | 13%           | ~               | $\checkmark$            |
| Carbon monoxide                                | NSW EPA TM-32<br>(USEPA Method 10)              | NSW EPA TM-32<br>(USEPA Method 10)                                   | 12%           | √               | $\checkmark$            |
| Nitrogen oxides                                | NSW EPA TM-11<br>(USEPA Method 7E)              | NSW EPA TM-11<br>(USEPA Method 7E)                                   | 12%           | ✓               | ✓                       |
| Oxygen                                         | NSW EPA TM-25<br>(USEPA Method 3A)              | NSW EPA TM-25<br>(USEPA Method 3A)                                   | 13%           | ✓               | ~                       |
| Hydrogen sulfide                               | Ektimo 255                                      | Ektimo 255                                                           | not specified | ✓               | $\checkmark^{\dagger}$  |
| Hydrogen sulfide                               | NSW EPA TM-5<br>(USEPA Method 11)               | NSW EPA TM-5                                                         | not specified | ✓               | $\checkmark^{\dagger}$  |
| Speciated volatile organic compounds<br>(VOCs) | NSW EPA TM-34 <sup>d</sup><br>(USEPA Method 18) | Ektimo 344                                                           | 19%           | ✓               | $\checkmark^{\dagger}$  |
| Solid particles (total)                        | NSW EPA TM-15<br>(AS 4323.2)                    | NSW EPA TM-15<br>(AS 4323.2)                                         | 3%            | ✓               | ✓**                     |
| Type 1 substances (As, Cd, Hg, Pb, Sb)         | NSW EPA TM-12<br>(USEPA Method 29)              | Envirolab in-house methods<br>Metals-006, Metals-022<br>& Metals-021 | 15%           | ✓               | $\checkmark^{\ddagger}$ |
| Dioxins and furans (PCDDs and PCDFs)           | NSW EPA TM-18<br>(USEPA Method 23)              | NMI in-house method<br>AUTL_MET_02                                   | 16%           | ✓               | ٧٩                      |
| Fluorine & fluorine compounds                  | NSW EPA TM-9<br>(USEPA Method 13B)              | ALS in-house method<br>EA144C & Ektimo 240                           | 25%           | ✓               | <b>√</b> <sup>#,†</sup> |
| Hydrogen chloride                              | NSW EPA TM-8<br>(USEPA Method 26A)              | Ektimo 235                                                           | 14%           | $\checkmark$    | $\checkmark^{\dagger}$  |
| Chlorine                                       | NSW EPA TM-7<br>(USEPA Method 26A)              | Ektimo 235                                                           | 14%           | ~               | $\checkmark^{\dagger}$  |
| Sulfuric acid mist and/or sulfur trioxide      | NSW EPA TM-3<br>(USEPA Method 8)                | Ektimo 235                                                           | 16%           | $\checkmark$    | $\checkmark^{\dagger}$  |

\* Uncertainties cited in this table are estimated using typical values and are calculated at the 95% confidence level (coverage factor = 2).

<sup>†</sup> Analysis conducted at the Ektimo Mitcham, VIC laboratory, NATA accreditation number 14601. Results were reported on:

20 June 2022 in report LV-002975.

21 June 2022 in report LV-002993.

21 June 2022 in report LV-002999.

23 June 2022 in report R012983 – ISE F.

<sup>††</sup> Gravimetric analysis conducted at the Ektimo Unanderra, NSW laboratory, NATA accreditation number 14601.

<sup>‡</sup> Analysis performed by Envirolab, NATA accreditation number 2901. Results were reported to Ektimo on 16 June 2022 in report 297511.

- <sup>1</sup> Analysis performed by Australian Government National Measurement Institute, NATA accreditation number 198. Results were reported to Ektimo on 4 July 2022 in report #DAU22\_167.
- <sup>#</sup> Analysis (solid fluoride only) performed by Australian Laboratory Services Pty Ltd, NATA accreditation number 825. Results were reported to Ektimo on 22 June 2022 in report EN2205612.
- d Excludes recovery study as specified in section 8.4.3 of USEPA Test Method 18. VOCs were less than the specified detection limit, therefore the USEPA Test Method 18 recovery study could not be executed.



NATA

Page: 13 of 17

#### 4 Deviations to Test Methods

#### Hydrogen Sulfide

The hydrogen sulfide result (sampled on 7 June 2022) was performed via Ektimo Method 255 (based on Vic EPA Method B18; UV-Vis, colorimetric detection).

Ektimo Method 255 comprises sampling into an impinger solution containing an alkaline cadmium hydroxide suspension.

The hydrogen sulfide in the sample is precipitated as cadmium sulfide and the collected sulfide is determined spectrophotometrically at 670nm by measuring methylene blue. The methylene blue is produced by reaction of sulfide with an acid solution of N,N-dimethyl-p-phenylenediamine and ferric chloride.

Use of Ektimo Method 255 provides for a significantly lower detection limit than USEPA Method 11. A lower detection limit may be necessary at this location because the measured hydrogen sulfide concentration is subject to 3% oxygen correction. Please note, that hydrogen sulfide was also sampled via USEPA 11 (NSW TM-5).

#### 5 Plant Operating Conditions

See VIP Drum Reconditioners records for complete process conditions.

The Open Head Incinerator Afterburner was indicating a combustion zone temperature of 960°C during the sampling period.

#### 6 Quality Assurance/Quality Control Information

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website <u>www.nata.com.au</u>.

Ektimo is accredited by NATA to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through mutual recognition arrangements with these organisations, NATA accreditation is recognised worldwide.



#### 7 Definitions

The following symbols and abbreviations may be used in this test report:

| % v/v                   | Volume to volume ratio, dry or wet basis                                                                                        |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| ~                       | Approximately                                                                                                                   |
| <                       | Less than                                                                                                                       |
| >                       | Greater than                                                                                                                    |
| 2                       | Greater than or equal to                                                                                                        |
| _<br>AS                 | Australian Standard                                                                                                             |
| D                       | Duct diameter or equivalent duct diameter for rectangular ducts                                                                 |
| DECC                    | Department of Environment & Climate Change (NSW)                                                                                |
| Disturbance             | A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes      |
|                         | centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes or  |
|                         | changes in pipe diameter.                                                                                                       |
| EPA                     | Environment Protection Authority                                                                                                |
| FTIR                    | Fourier transform infra-red                                                                                                     |
| ISC                     | Intersociety Committee, Methods of Air Sampling and Analysis                                                                    |
| ISO                     | International Organisation for Standardisation                                                                                  |
| ITE                     | Individual threshold estimate                                                                                                   |
| Lower bound             | When an analyte is not present above the detection limit, the result is assumed to be equal to zero.                            |
| Medium bound            | When an analyte is not present above the detection limit, the result is assumed to be equal to half of the detection limit.     |
| NA                      | Not applicable                                                                                                                  |
| NATA                    | National Association of Testing Authorities                                                                                     |
| ОМ                      | Other approved method                                                                                                           |
| Semi-guantified VOCs    | Unknown VOCs (those for which an analytical standard is not available), are identified by matching the mass spectrum of the     |
| ·                       | chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match guality exceeding 70%. An             |
|                         | estimated concentration is determined by matching the area of the peak with the nearest suitable compound in the analytical     |
|                         | calibration standard mixture.                                                                                                   |
| STP                     | Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0 °C, at discharge oxygen     |
|                         | concentration and an absolute pressure of 101.325 kPa.                                                                          |
| ТМ                      | Test method                                                                                                                     |
| тос                     | Total organic carbon. This is the sum of all compounds of carbon which contain at least one carbon-to-carbon bond, plus         |
|                         | methane and its derivatives.                                                                                                    |
| USEPA                   | United States Environmental Protection Agency                                                                                   |
| Velocity difference     | The percentage difference between the average of initial flows and after flows.                                                 |
| VOC                     | Volatile organic compound. A carbon-based chemical compound with a vapour pressure of at least 0.010 kPa at 25°C or having      |
|                         | a corresponding volatility under the given conditions of use. VOCs may contain oxygen, nitrogen and other elements. VOCs do     |
|                         | not include carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.                              |
| XRD                     | X-ray diffractometry                                                                                                            |
| Upper bound             | When an analyte is not present above the detection limit, the result is assumed to be equal to the detection limit.             |
| 95% confidence interval | Range of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result is outside |
|                         | this range.                                                                                                                     |
|                         |                                                                                                                                 |





# 8 Appendix 1: Site Photos



EPA 1 – Afterburner Discharge Stack



EPA 2 – Cooling Air Vent



# Ektimo

ektimo.com.au 1300 364 005

# MELBOURNE (Head Office) 26 Redland Drive Mitcham VIC 3132

AUSTRALIA

6/78 Reserve Road, Artarmon NSW 2064 AUSTRALIA

# WOLLONGONG

1/251 Princes Highway Unanderra NSW 2526 AUSTRALIA

# PERTH

52 Cooper Road Cockburn Central WA 6164 AUSTRALIA

# BRISBANE

3/109 Riverside Place Morningside QLD 4170 AUSTRALIA